LabelPrompt: Effective Prompt-based Learning for Relation Classification
Recently, prompt-based learning has become a very popular solution in many Natural Language Processing (NLP) tasks by inserting a template into model input, which converts the task into a cloze-style one to smoothing out differences between the Pre-trained Language Model (PLM) and the current task. But in the case of relation classification, it is difficult to map the masked output to the relation labels because of its abundant semantic information, e.g. org:founded_by”. Therefore, a pre-trained model still needs enough labelled data to fit the relations. To mitigate this challenge, in this paper, we present a novel prompt-based learning method, namely LabelPrompt, for the relation classification task. It is an extraordinary intuitive approach by a motivation: “GIVE MODEL CHOICES!”. First, we define some additional tokens to represent the relation labels, which regards these tokens as the verbalizer with semantic initialisation and constructs them with a prompt template method. Then we revisit the inconsistency of the predicted relation and the given entities, an entity-aware module with the thought of contrastive learning is designed to mitigate the problem. At last, we apply an attention query strategy to self-attention layers to resolve two types of tokens, prompt tokens and sequence tokens. The proposed strategy effectively improves the adaptation capability of prompt-based learning in the relation classification task when only a small labelled data is available. Extensive experimental results obtained on several bench-marking datasets demonstrate the superiority of the proposed LabelPrompt method, particularly in the few-shot scenario.
READ FULL TEXT