Label-Descriptive Patterns and their Application to Characterizing Classification Errors
State-of-the-art deep learning methods achieve human-like performance on many tasks, but make errors nevertheless. Characterizing these errors in easily interpretable terms gives insight into whether a model is prone to making systematic errors, but also gives a way to act and improve the model. In this paper we propose a method that allows us to do so for arbitrary classifiers by mining a small set of patterns that together succinctly describe the input data that is partitioned according to correctness of prediction. We show this is an instance of the more general label description problem, which we formulate in terms of the Minimum Description Length principle. To discover good pattern sets we propose the efficient and hyperparameter-free Premise algorithm, which through an extensive set of experiments we show on both synthetic and real-world data performs very well in practice; unlike existing solutions it ably recovers ground truth patterns, even on highly imbalanced data over many unique items, or where patterns are only weakly associated to labels. Through two real-world case studies we confirm that Premise gives clear and actionable insight into the systematic errors made by modern NLP classifiers.
READ FULL TEXT