Label Aware Graph Convolutional Network -- Not All Edges Deserve Your Attention
Graph classification is practically important in many domains. To solve this problem, one usually calculates a low-dimensional representation for each node in the graph with supervised or unsupervised approaches. Most existing approaches consider all the edges between nodes while overlooking whether the edge will brings positive or negative influence to the node representation learning. In many real-world applications, however, some connections among the nodes can be noisy for graph convolution, and not all the edges deserve your attention. In this work, we distinguish the positive and negative impacts of the neighbors to the node in graph node classification, and propose to enhance the graph convolutional network by considering the labels between the neighbor edges. We present a novel GCN framework, called Label-aware Graph Convolutional Network (LAGCN), which incorporates the supervised and unsupervised learning by introducing the edge label predictor. As a general model, LAGCN can be easily adapted in various previous GCN and enhance their performance with some theoretical guarantees. Experimental results on multiple real-world datasets show that LAGCN is competitive against various state-of-the-art methods in graph classification.
READ FULL TEXT