L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction

03/05/2017
by   Yongwei Nie, et al.
0

Current face alignment algorithms can robustly find a set of landmarks along face contour. However, the landmarks are sparse and lack curve details, especially in chin and cheek areas where a lot of concave-convex bending information exists. In this paper, we propose a local to global seam cutting and integrating algorithm (L2GSCI) to extract continuous and accurate face contour. Our method works in three steps with the help of a rough initial curve. First, we sample small and overlapped squares along the initial curve. Second, the seam cutting part of L2GSCI extracts a local seam in each square region. Finally, the seam integrating part of L2GSCI connects all the redundant seams together to form a continuous and complete face curve. Overall, the proposed method is much more straightforward than existing face alignment algorithms, but can achieve pixel-level continuous face curves rather than discrete and sparse landmarks. Moreover, experiments on two face benchmark datasets (i.e., LFPW and HELEN) show that our method can precisely reveal concave-convex bending details of face contours, which has significantly improved the performance when compared with the state-ofthe- art face alignment approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro