KU-ISPL Speaker Recognition Systems under Language mismatch condition for NIST 2016 Speaker Recognition Evaluation

02/03/2017 ∙ by Suwon Shon, et al. ∙ 0

Korea University Intelligent Signal Processing Lab. (KU-ISPL) developed speaker recognition system for SRE16 fixed training condition. Data for evaluation trials are collected from outside North America, spoken in Tagalog and Cantonese while training data only is spoken English. Thus, main issue for SRE16 is compensating the discrepancy between different languages. As development dataset which is spoken in Cebuano and Mandarin, we could prepare the evaluation trials through preliminary experiments to compensate the language mismatched condition. Our team developed 4 different approaches to extract i-vectors and applied state-of-the-art techniques as backend. To compensate language mismatch, we investigated and endeavored unique method such as unsupervised language clustering, inter language variability compensation and gender/language dependent score normalization.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.