Knowledge-Guided Recurrent Neural Network Learning for Task-Oriented Action Prediction
This paper aims at task-oriented action prediction, i.e., predicting a sequence of actions towards accomplishing a specific task under a certain scene, which is a new problem in computer vision research. The main challenges lie in how to model task-specific knowledge and integrate it in the learning procedure. In this work, we propose to train a recurrent long-short term memory (LSTM) network for handling this problem, i.e., taking a scene image (including pre-located objects) and the specified task as input and recurrently predicting action sequences. However, training such a network usually requires large amounts of annotated samples for covering the semantic space (e.g., diverse action decomposition and ordering). To alleviate this issue, we introduce a temporal And-Or graph (AOG) for task description, which hierarchically represents a task into atomic actions. With this AOG representation, we can produce many valid samples (i.e., action sequences according with common sense) by training another auxiliary LSTM network with a small set of annotated samples. And these generated samples (i.e., task-oriented action sequences) effectively facilitate training the model for task-oriented action prediction. In the experiments, we create a new dataset containing diverse daily tasks and extensively evaluate the effectiveness of our approach.
READ FULL TEXT