Knowledge Amalgamation from Heterogeneous Networks by Common Feature Learning
An increasing number of well-trained deep networks have been released online by researchers and developers, enabling the community to reuse them in a plug-and-play way without accessing the training annotations. However, due to the large number of network variants, such public-available trained models are often of different architectures, each of which being tailored for a specific task or dataset. In this paper, we study a deep-model reusing task, where we are given as input pre-trained networks of heterogeneous architectures specializing in distinct tasks, as teacher models. We aim to learn a multitalented and light-weight student model that is able to grasp the integrated knowledge from all such heterogeneous-structure teachers, again without accessing any human annotation. To this end, we propose a common feature learning scheme, in which the features of all teachers are transformed into a common space and the student is enforced to imitate them all so as to amalgamate the intact knowledge. We test the proposed approach on a list of benchmarks and demonstrate that the learned student is able to achieve very promising performance, superior to those of the teachers in their specialized tasks.
READ FULL TEXT