Knapsack based Optimal Policies for Budget-Limited Multi-Armed Bandits

04/09/2012
by   Long Tran-Thanh, et al.
0

In budget-limited multi-armed bandit (MAB) problems, the learner's actions are costly and constrained by a fixed budget. Consequently, an optimal exploitation policy may not be to pull the optimal arm repeatedly, as is the case in other variants of MAB, but rather to pull the sequence of different arms that maximises the agent's total reward within the budget. This difference from existing MABs means that new approaches to maximising the total reward are required. Given this, we develop two pulling policies, namely: (i) KUBE; and (ii) fractional KUBE. Whereas the former provides better performance up to 40 in our experimental settings, the latter is computationally less expensive. We also prove logarithmic upper bounds for the regret of both policies, and show that these bounds are asymptotically optimal (i.e. they only differ from the best possible regret by a constant factor).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset