KinSPEAK: Improving speech recognition for Kinyarwanda via semi-supervised learning methods

08/23/2023
by   Antoine Nzeyimana, et al.
0

Despite recent availability of large transcribed Kinyarwanda speech data, achieving robust speech recognition for Kinyarwanda is still challenging. In this work, we show that using self-supervised pre-training, following a simple curriculum schedule during fine-tuning and using semi-supervised learning to leverage large unlabelled speech data significantly improve speech recognition performance for Kinyarwanda. Our approach focuses on using public domain data only. A new studio-quality speech dataset is collected from a public website, then used to train a clean baseline model. The clean baseline model is then used to rank examples from a more diverse and noisy public dataset, defining a simple curriculum training schedule. Finally, we apply semi-supervised learning to label and learn from large unlabelled data in four successive generations. Our final model achieves 3.2 15.9 best of our knowledge. Our experiments also indicate that using syllabic rather than character-based tokenization results in better speech recognition performance for Kinyarwanda.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro