Kinematics Transformer: Solving The Inverse Modeling Problem of Soft Robots using Transformers

11/12/2022
by   Abdelrahman Alkhodary, et al.
0

Soft robotic manipulators provide numerous advantages over conventional rigid manipulators in fragile environments such as the marine environment. However, developing analytic inverse models necessary for shape, motion, and force control of such robots remains a challenging problem. As an alternative to analytic models, numerical models can be learned using powerful machine learned methods. In this paper, the Kinematics Transformer is proposed for developing accurate and precise inverse kinematic models of soft robotic limbs. The proposed method re-casts the inverse kinematics problem as a sequential prediction problem and is based on the transformer architecture. Numerical simulations reveal that the proposed method can effectively be used in controlling a soft limb. Benchmark studies also reveal that the proposed method has better accuracy and precision compared to the baseline feed-forward neural network

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro