KGEval: Estimating Accuracy of Automatically Constructed Knowledge Graphs
Automatic construction of large knowledge graphs (KG) by mining web-scale text datasets has received considerable attention recently. Estimating accuracy of such automatically constructed KGs is a challenging problem due to their size and diversity. This important problem has largely been ignored in prior research we fill this gap and propose KGEval. KGEval binds facts of a KG using coupling constraints and crowdsources the facts that infer correctness of large parts of the KG. We demonstrate that the objective optimized by KGEval is submodular and NP-hard, allowing guarantees for our approximation algorithm. Through extensive experiments on real-world datasets, we demonstrate that KGEval is able to estimate KG accuracy more accurately compared to other competitive baselines, while requiring significantly lesser number of human evaluations.
READ FULL TEXT