Kernelized Reinforcement Learning with Order Optimal Regret Bounds

06/13/2023
by   Sattar Vakili, et al.
0

Reinforcement learning (RL) has shown empirical success in various real world settings with complex models and large state-action spaces. The existing analytical results, however, typically focus on settings with a small number of state-actions or simple models such as linearly modeled state-action value functions. To derive RL policies that efficiently handle large state-action spaces with more general value functions, some recent works have considered nonlinear function approximation using kernel ridge regression. We propose π-KRVI, an optimistic modification of least-squares value iteration, when the state-action value function is represented by an RKHS. We prove the first order-optimal regret guarantees under a general setting. Our results show a significant polynomial in the number of episodes improvement over the state of the art. In particular, with highly non-smooth kernels (such as Neural Tangent kernel or some Matérn kernels) the existing results lead to trivial (superlinear in the number of episodes) regret bounds. We show a sublinear regret bound that is order optimal in the case of Matérn kernels where a lower bound on regret is known.

READ FULL TEXT
research
02/01/2023

Sample Complexity of Kernel-Based Q-Learning

Modern reinforcement learning (RL) often faces an enormous state-action ...
research
11/16/2020

No-Regret Reinforcement Learning with Value Function Approximation: a Kernel Embedding Approach

We consider the regret minimisation problem in reinforcement learning (R...
research
10/25/2021

Can Q-Learning be Improved with Advice?

Despite rapid progress in theoretical reinforcement learning (RL) over t...
research
12/07/2021

First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach

Obtaining first-order regret bounds – regret bounds scaling not as the w...
research
11/09/2020

On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces

The classical theory of reinforcement learning (RL) has focused on tabul...
research
08/25/2023

Nonparametric Additive Value Functions: Interpretable Reinforcement Learning with an Application to Surgical Recovery

We propose a nonparametric additive model for estimating interpretable v...
research
11/02/2020

A Variant of the Wang-Foster-Kakade Lower Bound for the Discounted Setting

Recently, Wang et al. (2020) showed a highly intriguing hardness result ...

Please sign up or login with your details

Forgot password? Click here to reset