Kernelized Deep Convolutional Neural Network for Describing Complex Images

09/15/2015
by   Zhen Liu, et al.
0

With the impressive capability to capture visual content, deep convolutional neural networks (CNN) have demon- strated promising performance in various vision-based ap- plications, such as classification, recognition, and objec- t detection. However, due to the intrinsic structure design of CNN, for images with complex content, it achieves lim- ited capability on invariance to translation, rotation, and re-sizing changes, which is strongly emphasized in the s- cenario of content-based image retrieval. In this paper, to address this problem, we proposed a new kernelized deep convolutional neural network. We first discuss our motiva- tion by an experimental study to demonstrate the sensitivi- ty of the global CNN feature to the basic geometric trans- formations. Then, we propose to represent visual content with approximate invariance to the above geometric trans- formations from a kernelized perspective. We extract CNN features on the detected object-like patches and aggregate these patch-level CNN features to form a vectorial repre- sentation with the Fisher vector model. The effectiveness of our proposed algorithm is demonstrated on image search application with three benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset