Kernel optimization for Low-Rank Multi-Fidelity Algorithms

01/05/2021
by   Mani Razi, et al.
0

One of the major challenges for low-rank multi-fidelity (MF) approaches is the assumption that low-fidelity (LF) and high-fidelity (HF) models admit "similar" low-rank kernel representations. Low-rank MF methods have traditionally attempted to exploit low-rank representations of linear kernels, which are kernel functions of the form K(u,v) = v^T u for vectors u and v. However, such linear kernels may not be able to capture low-rank behavior, and they may admit LF and HF kernels that are not similar. Such a situation renders a naive approach to low-rank MF procedures ineffective. In this paper, we propose a novel approach for the selection of a near-optimal kernel function for use in low-rank MF methods. The proposed framework is a two-step strategy wherein: (1) hyperparameters of a library of kernel functions are optimized, and (2) a particular combination of the optimized kernels is selected, through either a convex mixture (Additive Kernels) or through a data-driven optimization (Adaptive Kernels). The two resulting methods for this generalized framework both utilize only the available inexpensive low-fidelity data and thus no evaluation of high-fidelity simulation model is needed until a kernel is chosen. These proposed approaches are tested on five non-trivial problems including multi-fidelity surrogate modeling for one- and two-species molecular systems, gravitational many-body problem, associating polymer networks, plasmonic nano-particle arrays, and an incompressible flow in channels with stenosis. The results for these numerical experiments demonstrate the numerical stability efficiency of both proposed kernel function selection procedures, as well as high accuracy of their resultant predictive models for estimation of quantities of interest. Comparisons against standard linear kernel procedures also demonstrate increased accuracy of the optimized kernel approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset