Kernel Conjugate Gradient Methods with Random Projections

11/05/2018
by   Junhong Lin, et al.
0

We propose and study kernel conjugate gradient methods (KCGM) with random projections for least-squares regression over a separable Hilbert space. Considering two types of random projections generated by randomized sketches and Nyström subsampling, we prove optimal statistical results with respect to variants of norms for the algorithms under a suitable stopping rule. Particularly, our results show that if the projection dimension is proportional to the effective dimension of the problem, KCGM with randomized sketches can generalize optimally, while achieving a computational advantage. As a corollary, we derive optimal rates for classic KCGM in the case that the target function may not be in the hypothesis space, filling a theoretical gap.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset