Kernel-based interpolation at approximate Fekete points

12/16/2019 ∙ by Toni Karvonen, et al. ∙ 0

We construct approximate Fekete point sets for kernel-based interpolation by maximising the determinant of a kernel Gram matrix obtained via truncation of an orthonormal expansion of the kernel. Uniform error estimates are proved for kernel interpolants at the resulting points. If the kernel is Gaussian we show that the approximate Fekete points in one dimension are the solution to a convex optimisation problem and that the interpolants convergence with a super-exponential rate. A numerical experiment is provided for the Gaussian kernel.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.