k-Means Maximum Entropy Exploration
Exploration in high-dimensional, continuous spaces with sparse rewards is an open problem in reinforcement learning. Artificial curiosity algorithms address this by creating rewards that lead to exploration. Given a reinforcement learning algorithm capable of maximizing rewards, the problem reduces to finding an optimization objective consistent with exploration. Maximum entropy exploration uses the entropy of the state visitation distribution as such an objective. However, efficiently estimating the entropy of the state visitation distribution is challenging in high-dimensional, continuous spaces. We introduce an artificial curiosity algorithm based on lower bounding an approximation to the entropy of the state visitation distribution. The bound relies on a result for non-parametric density estimation in arbitrary dimensions using k-means. We show that our approach is both computationally efficient and competitive on benchmarks for exploration in high-dimensional, continuous spaces, especially on tasks where reinforcement learning algorithms are unable to find rewards.
READ FULL TEXT