Jointly optimal dereverberation and beamforming

10/30/2019 ∙ by Christoph Boeddeker, et al. ∙ 0

We previously proposed an optimal (in the maximum likelihood sense) convolutional beamformer that can perform simultaneous denoising and dereverberation, and showed its superiority over the widely used cascade of a WPE dereverberation filter and a conventional MPDR beamformer. However, it has not been fully investigated which components in the convolutional beamformer yield such superiority. To this end, this paper presents a new derivation of the convolutional beamformer that allows us to factorize it into a WPE dereverberation filter, and a special type of a (non-convolutional) beamformer, referred to as a wMPDR beamformer, without loss of optimality. With experiments, we show that the superiority of the convolutional beamformer in fact comes from its wMPDR part.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.