Joint Wireless and Computing Resources Allocation in Multi-Cell MEC

11/26/2021
by   M. Zeng, et al.
Université Laval
0

This paper addresses join wireless and computing resource allocation in mobile edge computing (MEC) systems with several access points and with the possibility that users connect to many access points, and utilize the computation capability of many servers at the same time. The problem of sum transmission energy minimization under response time constraints is considered. It is proved, that the optimization problem is non-convex. The complexity of optimization of a part of the system parameters is investigated, and based on these results an Iterative Resource Allocation procedure is proposed, that converges to a local optimum. The performance of the joint resource allocation is evaluated by comparing it to lower and upper bounds defined by less or more flexible multi-cell MEC architectures. The results show that the free selection of the access point is crucial for good system performance.

READ FULL TEXT VIEW PDF
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

10/10/2019

Dynamic Spectrum Sharing for Load Balancing in Multi-Cell Mobile Edge Computing

Large-scale mobile edge computing (MEC) systems require scalable solutio...
03/20/2018

Energy-Efficient Joint Offloading and Wireless Resource Allocation Strategy in Multi-MEC Server Systems

Mobile edge computing (MEC) is an emerging paradigm that mobile devices ...
03/23/2018

Joint Head Selection and Airtime Allocation for Data Dissemination in Mobile Social Networks

Mobile social networks (MSNs) enable people with similar interests to in...
03/05/2021

Energy-Efficient Task Offloading and Resource Allocation for Multiple Access Mobile Edge Computing

In this paper, the problem of joint radio and computation resource manag...
11/11/2020

SARA – A Semantic Access Point Resource Allocation Service for Heterogenous Wireless Networks

In this paper, we present SARA, a Semantic Access point Resource Allocat...
11/08/2021

Joint Optimization of Uplink Power and Computational Resources in Mobile Edge Computing-Enabled Cell-Free Massive MIMO

The coupling of cell-free massive MIMO (CF-mMIMO) with Mobile Edge Compu...
10/18/2007

Utility-Based Wireless Resource Allocation for Variable Rate Transmission

For most wireless services with variable rate transmission, both average...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

I Introduction

Mobile edge computing (MEC) represents a promising technology to reduce the latency for 5G and beyond networks [1, 2]. It allows users to offload their computational intensive task to servers in close proximity, and thus, significantly enhancing their computation capacities and prolonging their lifespan. The whole process in general consists of the following three sequential phases [3]: 1) uplink data transmission; 2) task processing at the MEC server; and 3) results feedback through the downlink. The uplink and downlink transmission phases involve the allocation of wireless resources, while the task processing phase concerns the computational resources. As a result, a joint allocation of wireless and computational resources is required to deliver a decent system performance[4].

Initially, MEC was applied to single-user systems, where the optimization variables include the transmission power, the offloading decision and ratio as well as the central processing unit (CPU) frequency for computing [5, 6]. The single-user systems were then extended to the multi-user ones [7, 8, 9], where how to share the wireless and computational resources among the users directly affect the system performance. Recently, non-orthogonal multiple access is envisioned as a promising access technology [10], and its application to MEC has been considered, for example in [11]. Note that the above mentioned works only apply to single-cell systems. The general scenario of multi-cell systems is attracting great attention recently [12, 13, 14]. Compared with single-cell systems, a new problem that emerges in multi-cell systems is how to match the users to the access points (APs).

In this paper we consider a multi-AP multi-user MEC system, where each user can access multiple APs and utilize their computation resource. This generalizes the previous works [12, 13, 14], where each user only offloads to one AP. Meanwhile, as in [14], we consider the general case with flexible bandwidth allocation across both the APs and users. The system objective is to minimize the sum energy consumption under response time constraints. The formulated problem is shown to be non-convex. To handle it, we first investigate the complexity of optimization of a part of the system parameters. On this basis, we propose an iterative resource allocation procedure that converges to local optimum. To evaluate the proposed iterative solution, we compare it with the lower and upper bounds defined by less or more flexible multi-cell MEC architectures. Presented results validate the necessity of free selection of APs. Meanwhile, binary allocation, where all users select the AP with the highest share of their load provides a performance close to parallel processing. This facilitates its application to large systems, where the level of parallel processing is low.

Ii System Model

We consider a multi-cell MEC system that consists of users, and APs, each equipped with a MEC server. We denote the set of users by , and APs by . We consider that each user generates a computationally intensive and delay sensitive task, which is characterized by three parameters, the size of the input data, the number of CPU cycles required to perform the computation, and the completion time constraint . To save energy consumption at the user for processing the tasks, and satisfy the delay constraint, each user offloads its computing task to one or multiple APs for processing. That is, each user offloads part of its input data, i.e., to AP , satisfying and . For simplicity we assume that this parallel processing has no communication or computation overhead [15]. The objective of the considered MEC system is to minimize the energy consumption for data transmission under the delay constraint, by jointly allocating the data to be sent to the APs, the wireless and the computing resources.

Ii-a Wireless resource management

The overall system bandwidth is Hz, which should be appropriately shared among the users. We consider flat fading channel and orthogonal access with frequency division multiple access. Denote the corresponding channel gain for user to AP by . Then, the achievable data rate at user to AP is given by

(1)

where is the corresponding transmission power, while denotes the allocated bandwidth, satisfying . Besides, is the noise power spectral density coefficient.

Accordingly, the transmission time and the resulting transmission energy consumption are respectively given by

(2)

Ii-B Computing resource management

Let us denote the computational capacity of the MEC server for AP by . We denote the computing resource allocated to user as , satisfying . Then, the computational time of user ’s task is given by . We assume that there is a linear relation between and , i.e., , where is the coefficient [16]. Then, we have

(3)

Iii Problem Formulation and General Results

We consider the problem of total transmission energy minimization, under the constraint on the completion time of the computational tasks. That is, for each user , the sum of the transmission and computational times should not violate the maximum delay , i.e., . We disregard the time needed for the downlink transmission of the results, since it concerns usually small amounts of data [17, 18, 19, 20]. Additionally, we do not consider the energy consumption of the computation at the MEC servers, since it is independent from the resource allocation (i.e., all computing needs to be performed at the MEC servers anyway, and consumes the same energy [19]).

The delay constraint then can be turned into the following rate requirement:

(4)

The resource allocation concerns the allocation of bandwidth, power, the computing resource and the data for each user on each AP. The energy minimization problem can be formulated as

(5a)
s.t. (5b)
(5c)
(5d)
(5e)

where are the matrix of allocated powers , bandwidth , computational resource and data size , respectively. Inequality constraints (5b) reflect the minimum data rate requirement for each user on each AP. Constraints (5c) limit the bandwidth, while (5d) restrict the computing resource. Constraints (5e) limit the data size.

To solve P1, we need to jointly allocate the wireless and computing resources and data, which are coupled in a non-linear way through the delay constraint. To progress, we first state the following theorem.

Theorem 1

Under any given bandwidth, computing resource and data size allocation , , the energy consumption is minimized when , holds and the transmission power is set as

(6)

where is the minimum rate that still fulfills the delay requirement, i.e., .

Proof:

When , and are given, the energy consumption of the users is independent, and minimizing the total energy consumption is equivalent to minimizing that of each user on each AP. Without loss of generality, we look at , which can be reformulated as

(7)

According to (7), it is clear that increases with . Therefore, is minimized when the minimum power is used. Meanwhile, to satisfy the delay constraint, we have , i.e., . At equality the achieved rate is , which in turn results a transmission time of . This concludes the proof.

Based on Theorem 1, Problem P1 can be simplified as

(8a)
s.t. (8b)
(8c)
(8d)

This is the problem that we will evaluate in detail.

Theorem 2

Problem P2, that is, the optimal joint allocation of bandwidth , computing resource and data size is a non-convex problem.

Proof:

P2 requires to jointly allocate bandwidth, computing resource and data size, and is difficult to handle. In the following, we show that P2 is actually non-convex. Without loss of generality, we only consider . We first consider over and . Denote its Hessian matrix as , which is

(9)

It can be verified that does not always hold. For example, by setting , we obtain . Since all leading principle minors of a convex function should be greater or equal than , this indicates P2 is non-convex.

Iv Complexity of Subproblems and the Joint Resource Allocation Algorithm

Problem P2 considers three decision variables, and . In this section we provide a discussion about the complexity of the subproblems, where some of the variables are considered as given input parameters. This discussion helps us to find ways for decomposing the optimization problem into tractable subproblems. It also guides future system design, where the network, the computing resources and the application may be controlled by three different parties.

Iv-a Complexity of Subproblems

Let us first consider subproblems of P2 with a single free decision variable.

Theorem 3

Subproblems of P2, where two of the three variables of and are fixed, are convex problems.

Proof:

To prove the theorem, we need to consider the following three subcases:

  1. [label=)]

  2. Optimizing data size . According to , we have

    Therefore, the considered problem is convex.

  3. Optimizing bandwidth . According to , we have

    Therefore, the considered problem is also convex.

  4. Optimizing computing resource . We replace variables with to get

    (10a)
    s.t. (10b)

    In (10), equality (10b) is clearly not affine, and thus, the feasible set is non-convex. To address it, we relax the equality constraint and substitute (10b) with

    (11)

    As a consequence of Theorem 1, the energy consumption decreases if is increased. Thus, for the optimal solution, equality is achieved in (11), which means substituting (10b) with (11) will not change the solution. Then, for inequality constraint (11), its second derivative is , and thus, it is convex. For the objective function, we have

    Therefore, (10) with the relaxed constraint (11) is convex.

Now let us consider the joint optimization problems, where one of the variables is fixed, while the other two are optimized jointly.

Theorem 4

Subproblems of P2, where is one of the decision variables, are non-convex problems.

Proof:
  1. [label=)]

  2. Optimizing data size and transmission bandwidth under fixed processing power allocation . This has been shown in Theorem 2, namely, the proof of the non-convexity of P2.

  3. Optimizing data size and processing power under fixed transmission bandwidth allocation . In this case, the Hessian matrix is given by

    where , and .

    It can be verified that does not always hold, which indicates the problem is non-convex. For example, by setting , we obtain .

However, the third subproblem of two decision variables, that is, the case when the size of the data blocks is fixed, is more tractable, according to the following theorem.

Theorem 5

The subproblem of P2, where is fixed and the transmission bandwidth and processing power allocation needs to be optimized, is a convex problem.

Proof:

We replace variables with to get

(12a)
s.t. (12b)
(12c)

First, equality constraint (12b) is affine. (12c) can be relaxed to (11), which is convex. Last, let us consider the objective function (12a). The Hessian matrix is given by

where , while . Besides, . After some algebraic manipulations, it can be verified that holds for all , which indicates (12a) is convex. This completes the proof.

Corollary 1

Consider the case, when each node can connect to a single AP only, and this AP is predefined (e.g., the one with best SNR). Then, the problem of transmission bandwidth and processing resource allocation is convex.

Proof:

This is a special case addressed by Theorem 5, where has only one non-zero element .

Iv-B Iterative Resource Allocation for Multi-AP Processing

1:Initialization: ;
2:Update based on BCAA, and calculate ;
3:;
4:while do
5:       Update based on DAA, and recalculate ;
6:       Update based on BCAA, and recalculate ;
7:end while
Algorithm 1 Iterative Resource Allocation for Multi-AP Processing

In this section, an Iterative Resource Allocation algorithm is proposed to solve the non-convex joint resource allocation problem P2. As shown in Algorithm 1, the proposed algorithm follows two iterative steps: i) the Data Allocation Algorithm (DAA) updates to allocate the data, for given bandwidth and computing resource allocation and , and ii) the Bandwidth and Computing resource Allocation Algorithm (BCAA) updates and to allocate bandwidth and computing resource, for given . We denote by and the energy consumption of user after optimizing and , respectively, and is the stop condition. Additionally, denotes the initial value for

, and it can be obtained using a fixed allocation, e.g., equal allocation, or a random allocation, e.g., following a uniform distribution.

The Data Allocation Algorithm (DAA): The data allocation problem under given bandwidth and computing resource is shown to be convex in Theorem 3. Therefore, we can use the Karush-Kuhn-Tucker (KKT) condition to derive the optimal . The KKT condition for data is given by (13) at the top of next page.

(13)

Note that in (13) is the Lagrange dual variable.

For given , the above equation can be used to obtain . Specifically, we have , which indicates that grows with , and thus a bisection search can be used to obtain by comparing with 0. Now the problem lies in how to obtain . When is increased, will decrease to ensure . Meanwhile, needs to hold. Consequently, can also be obtained with bisection search, by comparing with .

The resulting DAA consists of two loops: an outer loop to find the value of and an inner loop to determine the data allocation . The computational complexity is

The Bandwidth and Computing resource Allocation Algorithm (BCAA): Under given data allocation, the joint bandwidth and computing resource allocation problem is shown to be a convex one in Theorem 5, and thus, the optimal solution can be obtained using convex optimization tools, e.g., interior-point method. Nonetheless, considering that the bandwidth allocation is global for the entire network, while the computing resource allocation is local at each AP, we propose to apply an iterative algorithm to solve the joint bandwidth and computing resource allocation. The algorithm is presented in detail in our previous work [14], here we summarize it briefly. The proposed algorithm consists of two iterative steps: i) the Bandwidth Allocation Algorithm (BAA) updates to allocate bandwidth across and within the APs, for given (), and ii) the Computation resource Allocation Algorithm (CAA) updates to allocate the computing resource at each AP, for given bandwidth allocation .

Bandwidth Allocation Algorithm (BAA): Assume that the computing resource allocation is given. Then the KKT condition for is given by

(14)

where is the introduced auxiliary variable, satisfying . As for in (13), the bisection method can be used to obtain and . Likewise, the resulting BAA consists of two loops: an outer loop to find the value of and an inner loop to determine the bandwidth allocation . The computational complexity is .

Computing resource Allocation Algorithm (CAA): Under given bandwidth allocation, the computing resource allocation is independent across the APs. Thus, the energy minimization for each AP is equivalent to that of the overall system. Let us consider AP , . The KKT condition for is given by

where is the introduced auxiliary variable, satisfying . As for and , the bisection method can be used to obtain and . Likewise, the resulting CAA consists of two loops: an outer loop to find the value of and an inner loop to determine the computing resource allocation . The computational complexity is .

BAA and CAA have to be repeated until convergence. Since the bandwidth and computing resource allocation problem is convex, convergence is guaranteed and the converged local optimum is also the global optimum.

Convergence and Complexity:

Theorem 6

The Iterative Resource Allocation algorithm converges in finite steps.

Proof:

In both lines 9 and 10 of Algorithm 1, the energy consumption decreases, or remains unchanged. Since there is a lower bound for the energy consumption, e.g., 0, the Iterative Resource Allocation algorithm always terminates, either by reaching the lower bound, or by achieving a decrease less than . Therefore, convergence is guaranteed.

Denote the number of iterations required for Algorithm 1 and BCAA to converge by and , respectively. The total computational complexity is .

Fig. 1: Convergence of the Iterative Resource Allocation algorithm under different network scenarios, and different initial user data allocation. The markers show the termination of the iteration for the corresponding algorithms.

V Numerical Results

In this section numerical results are presented to evaluate the effectiveness of the proposed energy minimization algorithm. Specifically, first we evaluate the convergence of the Iterative Resource Allocation algorithm. Then we evaluate what is the level of distributed processing under the optimized resource allocation, to see whether this possibility leads to significant performance gains.

We consider a small cell multi-AP multi-user scenario, where image processing tasks are offloaded to the edge computing servers. The network parameters are set as for example in [21, 8, 22], while the task requirements follow [23, 8, 24]. More specifically, the number of APs and users are set to and . The users are placed uniformly randomly within the entire coverage region. The pathloss model follows , where is the distance in meter. The total bandwidth is 10 MHz, while the thermal noise density is -174 dBm/Hz. The data size of the computing task is 1.5 Mbits, while the delay constraint is 0.5 s. The computing coefficient is , and thus the computing need is 1.5 G CPU cycles. The computing capacity at each AP is 25 G CPU cycles/s.

Let us first investigate how the proposed iterative algorithm, described in Algorithm 1, converges. We consider three different initializations of the user data: Prop-1 denotes the case when the data for each user are equally allocated among the APs; Prop-2 is obtained following a uniformly random data size allocation; and finally Prop-3 represents the case when of the data are allocated to the AP with the best channel condition, while the rest are equally allocated to the remaining APs. The stop condition is mJ. According to the results, the algorithm converges to the same solution, independently from the initial data allocation. This indicates that the proposed algorithm is robust to the initialization. Moreover, Prop-3 requires the least number of iterations to approach the converged solution in all scenarios, which implies the proposed algorithm converges to a solution where users associate most of the data to their best APs.

Fig. 2: Energy consumption versus delay under different network scenarios.

We then plot the energy consumption versus the delay requirement in Fig. 2. As expected, the energy consumption decreases as the delay requirement becomes looser, for all considered scenarios. Lastly, we investigate how much the opportunity of parallel processing is utilized in the allocations. Fig. 3 considers only the users that connect to more than one AP, and shows what is the largest share of load sent to one of them, namely . The values are rather high for all cases, showing that most of the users have a preferred AP. This validates why an unbalanced initialization as Prop-3 on Fig. 1 leads to fast convergence for the Iterative Resource Allocation.

Fig. 3: Ratio of largest load share versus delay under different network scenarios.

Vi Conclusion

In this paper we investigated the join wireless and computing resource allocation for a multi-AP multi-user MEC network. The general case with parallel processing and global bandwidth sharing was considered, and the system objective was to minimize the sum transmission energy under response time constraints. The formulated problem was shown to be non-convex. To address it, we first investigated the complexity of optimizing a part of the system parameters, and based on the results proposed an Iterative Resource Allocation procedure with guaranteed convergence. Presented numerical results show that the proposed iterative algorithm converges rapidly to the local optimum. Moreover, by comparing the proposed iterative algorithm with the lower and upper bounds, it is clear that free selection of APs is crucial for obtaining decent system performance.

References

  • [1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication perspective,” IEEE Commun. Surv. Tuts., vol. 19, no. 4, pp. 2322–2358, 2017.
  • [2] M. Zeng, W. Hao, O. A. Dobre, Z. Ding, and H. V. Poor, “Massive mimo-assisted mobile edge computing: Exciting possibilities for computation offloading,” IEEE Veh. Technol. Mag., vol. 15, no. 2, pp. 31–38, Jun. 2020.
  • [3] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation for mobile edge computing-based augmented reality applications,” IEEE Wireless Commun. Lett., vol. 6, no. 3, pp. 398–401, Jun. 2017.
  • [4] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Communicating while computing: Distributed mobile cloud computing over 5G heterogeneous networks,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 45–55, Nov. 2014.
  • [5] W. Zhang, et al., “Energy-optimal mobile cloud computing under stochastic wireless channel,” IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, Sep. 2013.
  • [6] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge computing: Partial computation offloading using dynamic voltage scaling,” IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.
  • [7] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016.
  • [8] C. You, K. Huang, H. Chae, and B. H. Kim, “Energy-efficient resource allocation for mobile-edge computation offloading,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.
  • [9] M. Zeng and V. Fodor, “Energy-efficient resource allocation for noma-assisted mobile edge computing,” in Proc. IEEE PIMRC, Sep. 2018, pp. 1794–1799.
  • [10] W. Hao et al., “Codebook-based max–min energy-efficient resource allocation for uplink mmwave MIMO-NOMA systems,” IEEE Trans. Commun., vol. 67, no. 12, pp. 8303–8314, Dec. 2019.
  • [11] M. Zeng and V. Fodor, “Energy minimization for delay constrained mobile edge computing with orthogonal and non-orthogonal multiple access,” Ad Hoc Netw., vol. 98, p. 102060, Mar. 2020.
  • [12] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, “Joint service placement and request routing in multi-cell mobile edge computing networks,” in Proc. IEEE INFOCOM, May 2019.
  • [13] X. Yang, X. Yu, H. Huang, and H. Zhu, “Energy efficiency based joint computation offloading and resource allocation in multi-access mec systems,” IEEE Access, vol. 7, pp. 117 054–117 062, Aug. 2019.
  • [14] M. Zeng and V. Fodor, “Dynamic spectrum sharing for load balancing in multi-cell mobile edge computing,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 189–193, Feb. 2020.
  • [15] Y. Wu, K. Ni, C. Zhang, L. P. Qian, and D. H. K. Tsang, “Noma-assisted multi-access mobile edge computing: A joint optimization of computation offloading and time allocation,” IEEE Trans. Veh. Technol., vol. 67, no. 12, pp. 12 244–12 258, Dec. 2018.
  • [16] S. Jos̈ilo and D. György, “Joint management of wireless and computing resources for computation offloading in mobile edge clouds,” IEEE Trans. Cloud Comput., pp. 1–1, 2019.
  • [17] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjective optimization for computation offloading in fog computing,” IEEE Internet of Things J., vol. 5, no. 1, pp. 283–294, Feb. 2018.
  • [18] J. Ren, G. Yu, Y. Cai, and Y. He, “Latency optimization for resource allocation in mobile-edge computation offloading,” IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 5506–5519, Aug. 2018.
  • [19] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing optimization in wireless powered mobile-edge computing systems,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784–1797, Mar. 2018.
  • [20] M. Zeng, R. Du, V. Fodor, and C. Fischione, “Computation rate maximization for wireless powered mobile edge computing with NOMA,” in Proc. IEEE (WoWMoM), Jun. 2019, pp. 1–9.
  • [21] 3GPP TR 36.814, “Further advancements for E-UTRA physical layer aspects, annex a.2- system simulation scenario,” 2010.
  • [22] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems,” IEEE Trans. Wireless Commun., vol. 16, no. 9, pp. 5994–6009, Sept. 2017.
  • [23] IEEE 5G Initiative, “IEEE 5G and beyond technology roadmap white paper,” https://5g.ieee.org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf, 2018.
  • [24] A. Kiani and N. Ansari, “Edge computing aware NOMA for 5G networks,” IEEE Internet of Things J., vol. 5, no. 2, pp. 1299–1306, Apr. 2018.