Log In Sign Up

Joint Geographical and Temporal Modeling based on Matrix Factorization for Point-of-Interest Recommendation

by   Hossein A. Rahmani, et al.

With the popularity of Location-based Social Networks, Point-of-Interest (POI) recommendation has become an important task, which learns the users' preferences and mobility patterns to recommend POIs. Previous studies show that incorporating contextual information such as geographical and temporal influences is necessary to improve POI recommendation by addressing the data sparsity problem. However, existing methods model the geographical influence based on the physical distance between POIs and users, while ignoring the temporal characteristics of such geographical influences. In this paper, we perform a study on the user mobility patterns where we find out that users' check-ins happen around several centers depending on their current temporal state. Next, we propose a spatio-temporal activity-centers algorithm to model users' behavior more accurately. Finally, we demonstrate the effectiveness of our proposed contextual model by incorporating it into the matrix factorization model under two different settings: i) static and ii) temporal. To show the effectiveness of our proposed method, which we refer to as STACP, we conduct experiments on two well-known real-world datasets acquired from Gowalla and Foursquare LBSNs. Experimental results show that the STACP model achieves a statistically significant performance improvement, compared to the state-of-the-art techniques. Also, we demonstrate the effectiveness of capturing geographical and temporal information for modeling users' activity centers and the importance of modeling them jointly.


Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

Recommender Systems (RSs) aim to model and predict the user preference w...

A Systematic Analysis on the Impact of Contextual Information on Point-of-Interest Recommendation

As the popularity of Location-based Social Networks (LBSNs) increases, d...

RELINE: Point-of-Interest Recommendations using Multiple Network Embeddings

The rapid growth of users' involvement in Location-Based Social Networks...

Relation Embedding for Personalised POI Recommendation

Point-of-interest (POI) recommendation is one of the most important loca...

DREAM: A Dynamic Relational-Aware Model for Social Recommendation

Social connections play a vital role in improving the performance of rec...