Joint Design of Access and Backhaul in Densely Deployed MmWave Small Cells
With the rapid growth of mobile data traffic, the shortage of radio spectrum resource has become increasingly prominent. Millimeter wave (mmWave) small cells can be densely deployed in macro cells to improve network capacity and spectrum utilization. Such a network architecture is referred to as mmWave heterogeneous cellular networks (HetNets). Compared with the traditional wired backhaul, The integrated access and backhaul (IAB) architecture with wireless backhaul is more flexible and cost-effective for mmWave HetNets. However, the imbalance of throughput between the access and backhaul links will constrain the total system throughput. Consequently, it is necessary to jointly design of radio access and backhaul link. In this paper, we study the joint optimization of user association and backhaul resource allocation in mmWave HetNets, where different mmWave bands are adopted by the access and backhaul links. Considering the non-convex and combinatorial characteristics of the optimization problem and the dynamic nature of the mmWave link, we propose a multi-agent deep reinforcement learning (MADRL) based scheme to maximize the long-term total link throughput of the network. The simulation results show that the scheme can not only adjust user association and backhaul resource allocation strategy according to the dynamics in the access link state, but also effectively improve the link throughput under different system configurations.
READ FULL TEXT