Joint Demosaicing and Super-Resolution (JDSR): Network Design and Perceptual Optimization
Image demosaicing and super-resolution are two important tasks in color imaging pipeline. So far they have been mostly independently studied in the open literature of deep learning; little is known about the potential benefit of formulating a joint demosaicing and super-resolution (JDSR) problem. In this paper, we propose an end-to-end optimization solution to the JDSR problem and demonstrate its practical significance in computational imaging. Our technical contributions are mainly two-fold. On network design, we have developed a Densely-connected Squeeze-and-Excitation Residual Network (DSERN) for JDSR. For the first time, we address the issue of spatio-spectral attention for color images and discuss how to achieve better information flow by smooth activation for JDSR. Experimental results have shown moderate PSNR/SSIM gain can be achieved by DSERN over previous naive network architectures. On perceptual optimization, we propose to leverage the latest ideas including relativistic discriminator and pre-excitation perceptual loss function to further improve the visual quality of reconstructed images. Our extensive experiment results have shown that Texture-enhanced Relativistic average Generative Adversarial Network (TRaGAN) can produce both subjectively more pleasant images and objectively lower perceptual distortion scores than standard GAN for JDSR. We have verified the benefit of JDSR to high-quality image reconstruction from real-world Bayer pattern collected by NASA Mars Curiosity.
READ FULL TEXT