Joint Access and Backhaul Resource Management in Satellite-Drone Networks: A Competitive Market Approach

08/29/2019 ∙ by Ye Hu, et al. ∙ 0

In this paper, the problem of user association and resource allocation is studied for an integrated satellite-drone network (ISDN). In the considered model, drone base stations (DBSs) provide downlink connectivity, supplementally, to ground users whose demand cannot be satisfied by terrestrial small cell base stations (SBSs). Meanwhile, a satellite system and a set of terrestrial macrocell base stations (MBSs) are used to provide resources for backhaul connectivity for both DBSs and SBSs. For this scenario, one must jointly consider resource management over satellite-DBS/SBS backhaul links, MBS-DBS/SBS terrestrial backhaul links, and DBS/SBS-user radio access links as well as user association with DBSs and SBSs. This joint user association and resource allocation problem is modeled using a competitive market setting in which the transmission data is considered as a good that is being exchanged between users, DBSs, and SBSs that act as "buyers", and DBSs, SBSs, MBSs, and the satellite that act as "sellers". In this market, the quality-of-service (QoS) is used to capture the quality of the data transmission (defined as good), while the energy consumption the buyers use for data transmission is the cost of exchanging a good. According to the quality of goods, sellers in the market propose quotations to the buyers to sell their goods, while the buyers purchase the goods based on the quotation. The buyers profit from the difference between the earned QoS and the charged price, while the sellers profit from the difference between earned price and the energy spent for data transmission. The buyers and sellers in the market seek to reach a Walrasian equilibrium, at which all the goods are sold, and each of the devices' profit is maximized. A heavy ball based iterative algorithm is proposed to compute the Walrasian equilibrium of the formulated market.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.