Job Posting-Enriched Knowledge Graph for Skills-based Matching
The labor market is constantly evolving. Occupations are changing, being added, or disappearing to fit the needs of today's market. In recent years the pace of this change has accelerated, due to factors such as globalization, digitization, and the shift to working from home. Different factors are relevant when selecting employment, e.g., cultural fit, compensation, provided degree of freedom. To successfully fulfill an occupation the gap between required (by the job) and possessed (by the job seeker) skills needs to be as small as possible. Decreasing this skill-gap improves the fit between a job candidate and occupation. In this paper we propose a custom-built Skills Occupation Knowledge Graph (KG) that fits the above described dynamic nature of the labor market, by leveraging existing skills and occupation taxonomies enriched with external job posting data. We leverage this KG and explore several applications for skills-based matching of jobs to job seekers. First, we study link prediction as a means to quantify relevance of skills to occupations, which can help in prioritizing learning and development of employees. Next, we study node similarity methods and shortest path algorithms for career pathfinding. Finally, we leverage a term weighting method for identifying which skills are most "distinctive" for different (types of) occupations.
READ FULL TEXT