Iterative Low-Rank Approximation for CNN Compression

03/23/2018
by   Maksym Kholiavchenko, et al.
0

Deep convolutional neural networks contain tens of millions of parameters, making them impossible to work efficiently on embedded devices. We propose iterative approach of applying low-rank approximation to compress deep convolutional neural networks. Since classification and object detection are the most favored tasks for embedded devices, we demonstrate the effectiveness of our approach by compressing AlexNet, VGG-16, YOLOv2 and Tiny YOLO networks. Our results show the superiority of the proposed method compared to non-repetitive ones. We demonstrate higher compression ratio providing less accuracy loss.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro