Item Recommendation from Implicit Feedback
The task of item recommendation is to select the best items for a user from a large catalogue of items. Item recommenders are commonly trained from implicit feedback which consists of past actions that are positive only. Core challenges of item recommendation are (1) how to formulate a training objective from implicit feedback and (2) how to efficiently train models over a large item catalogue. This article provides an overview of item recommendation, its unique characteristics and some common approaches. It starts with an introduction to the problem and discusses different training objectives. The main body deals with learning algorithms and presents sampling based algorithms for general recommenders and more efficient algorithms for dot product models. Finally, the application of item recommenders for retrieval tasks is discussed.
READ FULL TEXT