Isotopic Arrangement of Simple Curves: an Exact Numerical Approach based on Subdivision

09/02/2020
by   Jyh-Ming Lien, et al.
0

This paper presents the first purely numerical (i.e., non-algebraic) subdivision algorithm for the isotopic approximation of a simple arrangement of curves. The arrangement is "simple" in the sense that any three curves have no common intersection, any two curves intersect transversally, and each curve is non-singular. A curve is given as the zero set of an analytic function f:ℝ^2→ℝ^2, and effective interval forms of f, ∂f/∂x, ∂f/∂y are available. Our solution generalizes the isotopic curve approximation algorithms of Plantinga-Vegter (2004) and Lin-Yap (2009). We use certified numerical primitives based on interval methods. Such algorithms have many favorable properties: they are practical, easy to implement, suffer no implementation gaps, integrate topological with geometric computation, and have adaptive as well as local complexity. A version of this paper without the appendices appeared in Lien et al. (2014).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro