Isotonic propensity score matching
We propose a one-to-many matching estimator of the average treatment effect based on propensity scores estimated by isotonic regression. The method relies on the monotonicity assumption on the propensity score function, which can be justified in many applications in economics. We show that the nature of the isotonic estimator can help us to fix many problems of existing matching methods, including efficiency, choice of the number of matches, choice of tuning parameters, robustness to propensity score misspecification, and bootstrap validity. As a by-product, a uniformly consistent isotonic estimator is developed for our proposed matching method.
READ FULL TEXT