Isoperimetric Inequalities for Real-Valued Functions with Applications to Monotonicity Testing

by   Hadley Black, et al.

We generalize the celebrated isoperimetric inequality of Khot, Minzer, and Safra (SICOMP 2018) for Boolean functions to the case of real-valued functions f {0,1}^d→ℝ. Our main tool in the proof of the generalized inequality is a new Boolean decomposition that represents every real-valued function f over an arbitrary partially ordered domain as a collection of Boolean functions over the same domain, roughly capturing the distance of f to monotonicity and the structure of violations of f to monotonicity. We apply our generalized isoperimetric inequality to improve algorithms for testing monotonicity and approximating the distance to monotonicity for real-valued functions. Our tester for monotonicity has query complexity O(min(r √(d),d)), where r is the size of the image of the input function. (The best previously known tester, by Chakrabarty and Seshadhri (STOC 2013), makes O(d) queries.) Our tester is nonadaptive and has 1-sided error. We show a matching lower bound for nonadaptive, 1-sided error testers for monotonicity. We also show that the distance to monotonicity of real-valued functions that are α-far from monotone can be approximated nonadaptively within a factor of O(√(dlog d)) with query complexity polynomial in 1/α and the dimension d. This query complexity is known to be nearly optimal for nonadaptive algorithms even for the special case of Boolean functions. (The best previously known distance approximation algorithm for real-valued functions, by Fattal and Ron (TALG 2010) achieves O(dlog r)-approximation.)



page 1

page 2

page 3

page 4


A Dichotomy for Real Boolean Holant Problems

We prove a complexity dichotomy for Holant problems on the boolean domai...

Applying Boolean discrete methods in the production of a real-valued probabilistic programming model

In this paper we explore the application of some notable Boolean methods...

L_0 Isotonic Regression With Secondary Objectives

We provide algorithms for isotonic regression minimizing L_0 error (Hamm...

More on zeros and approximation of the Ising partition function

We consider the problem of computing ∑_x e^f(x), where f(x)=∑_ij a_ijξ_i...

Adaptive reconstruction of imperfectly-observed monotone functions, with applications to uncertainty quantification

Motivated by the desire to numerically calculate rigorous upper and lowe...

A o(d) ·polylog n Monotonicity Tester for Boolean Functions over the Hypergrid [n]^d

We study monotonicity testing of Boolean functions over the hypergrid [n...

Natural pseudo-distance and optimal matching between reduced size functions

This paper studies the properties of a new lower bound for the natural p...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.