IoT DoS and DDoS Attack Detection using ResNet

by   Faisal Hussain, et al.

The network attacks are increasing both in frequency and intensity with the rapid growth of internet of things (IoT) devices. Recently, denial of service (DoS) and distributed denial of service (DDoS) attacks are reported as the most frequent attacks in IoT networks. The traditional security solutions like firewalls, intrusion detection systems, etc., are unable to detect the complex DoS and DDoS attacks since most of them filter the normal and attack traffic based upon the static predefined rules. However, these solutions can become reliable and effective when integrated with artificial intelligence (AI) based techniques. During the last few years, deep learning models especially convolutional neural networks achieved high significance due to their outstanding performance in the image processing field. The potential of these convolutional neural network (CNN) models can be used to efficiently detect the complex DoS and DDoS by converting the network traffic dataset into images. Therefore, in this work, we proposed a methodology to convert the network traffic data into image form and trained a state-of-the-art CNN model, i.e., ResNet over the converted data. The proposed methodology accomplished 99.99% accuracy for detecting the DoS and DDoS in case of binary classification. Furthermore, the proposed methodology achieved 87% average precision for recognizing eleven types of DoS and DDoS attack patterns which is 9% higher as compared to the state-of-the-art.



There are no comments yet.


page 1

page 4


Intrusion Detection System in Smart Home Network Using Bidirectional LSTM and Convolutional Neural Networks Hybrid Model

Internet of Things (IoT) allowed smart homes to improve the quality and ...

LUCID: A Practical, Lightweight Deep Learning Solution for DDoS Attack Detection

Distributed Denial of Service (DDoS) attacks are one of the most harmful...

BWCNN: Blink to Word, a Real-Time Convolutional Neural Network Approach

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative d...

Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT

The rapid increase in the use of IoT devices brings many benefits to the...

Collaborative adversary nodes learning on the logs of IoT devices in an IoT network

Artificial Intelligence (AI) development has encouraged many new researc...

MAT-CNN-SOPC: Motionless Analysis of Traffic Using Convolutional Neural Networks on System-On-a-Programmable-Chip

Intelligent Transportation Systems (ITS) have become an important pillar...

Detecting FDI Attack on Dense IoT Network with Distributed Filtering Collaboration and Consensus

The rise of IoT has made possible the development of personalized servi...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.