Inverse Problems in Asteroseismology

08/20/2018 ∙ by Earl Patrick Bellinger, et al. ∙ 0

Asteroseismology allows us to probe the internal structure of stars through their global modes of oscillation. Thanks to missions such as the NASA Kepler space observatory, we now have high-quality asteroseismic data for nearly 100 solar-type stars. In this thesis, new techniques to measure the ages, masses, and radii of stars are presented, as well as a way to infer their internal structure.

READ FULL TEXT VIEW PDF
POST COMMENT

Comments

There are no comments yet.

Authors

Code Repositories

asteroseismology

Forward and inverse problems in asteroseismology


view repo
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

Literatur

  • Adams (2008) Adams, F. C.: 2008, Stars in other universes: stellar structure with different fundamental constants”, 8, 010
  • Adler and Öktem (2017) Adler, J. and Öktem, O.: 2017, Solving ill-posed inverse problems using iterative deep neural networks”, Inverse Problems 33 (12), 124007
  • Aerts et al. (2010) Aerts, C., Christensen-Dalsgaard, J., and Kurtz, D. W.: 2010, Asteroseismology”, Springer
  • Allison (1979) Allison, H.: 1979, Inverse unstable problems and some of their applications”, The Mathematical Scientist
  • Andersen et al. (2014) Andersen, M. F., Grundahl, F., Christensen-Dalsgaard, J., et al.: 2014, Hardware and software for a robotic network of telescopes - SONG” in Revista Mexicana de Astronomia y Astrofisica Conference Series, Vol. 45 of Revista Mexicana de Astronomia y Astrofisica, vol. 27, pp 83–86
  • Angelou et al. (2017) Angelou, G. C., Bellinger, E. P., Hekker, S., and Basu, S.: 2017, On the Statistical Properties of the Lower Main Sequence”, 839, 116
  • Angulo et al. (1999) Angulo, C., Arnould, M., Rayet, M., et al.: 1999, A compilation of charged-particle induced thermonuclear reaction rates”, Nuclear Physics A 656, 3
  • Antia and Basu (1994) Antia, H. M. and Basu, S.: 1994, Nonasymptotic helioseismic inversion for solar structure”, 107
  • Antia and Chitre (1997) Antia, H. M. and Chitre, S. M.: 1997, Helioseismic models and solar neutrino fluxes”, 289, L1
  • Applegate (1988) Applegate, J. H.: 1988, Why stars become red giants”, 329, 803
  • Appourchaux et al. (2015) Appourchaux, T., Antia, H. M., Ball, W., et al.: 2015, A seismic and gravitationally bound double star observed by Kepler. Implication for the presence of a convective core”, 582, A25
  • Argelander (1844) Argelander, F.: 1844, Aufforderung an Freunde der Astronomie, zur Anstellung von eben so interessanten und nützlichen, als leicht auszuführenden Beobachtungen über mehrere wichtige Zweige der Himmelskunde”, Schumacher’s Jahrbuch für 1844
  • Arny (1990) Arny, T.: 1990, The star makers: A history of the theories of stellar structure and evolution”, Vistas in Astronomy 33, 211
  • Aston (1920) Aston, F. W.: 1920, LIX. The Mass-Spectra of Chemical Elements”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 39 (233), 611
  • Backus and Gilbert (1968) Backus, G. and Gilbert, F.: 1968, The Resolving Power of Gross Earth Data”, Geophysical Journal 16, 169
  • Backus and Gilbert (1970) Backus, G. and Gilbert, F.: 1970, Uniqueness in the Inversion of Inaccurate Gross Earth Data”, Philosophical Transactions of the Royal Society of London Series A 266, 123
  • Baglin et al. (2006) Baglin, A., Auvergne, M., Barge, P., et al.: 2006, Scientific Objectives for a Minisat: CoRoT” in M. Fridlund, A. Baglin, J. Lochard, and L. Conroy (eds.) The CoRoT Mission Pre-Launch Status - Stellar Seismology and Planet Finding, Vol. 1306 of ESA Special Publication, p. 33
  • Bahcall et al. (1998) Bahcall, J. N., Basu, S., and Pinsonneault, M. H.: 1998, How uncertain are solar neutrino predictions?”, Physics Letters B 433, 1
  • Baldner and Basu (2008) Baldner, C. S. and Basu, S.: 2008, Solar Cycle Related Changes at the Base of the Convection Zone”, 686, 1349
  • Ball and Gizon (2014) Ball, W. H. and Gizon, L.: 2014, A new correction of stellar oscillation frequencies for near-surface effects”, 568, A123
  • Banerjee and Roy (2014) Banerjee, S. and Roy, A.: 2014, Linear algebra and matrix analysis for statistics”, CRC Press
  • Barban et al. (2006) Barban, C., Matthews, J., De Ridder, J., et al.: 2006, Studying solar-like oscillations in red giants: MOST spacebased photometry of epsilon Ophiuchi” in Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the spherical Sun, Vol. 624 of ESA Special Publication, p. 30
  • Barban et al. (2007) Barban, C., Matthews, J. M., De Ridder, J., et al.: 2007, Detection of solar-like oscillations in the red giant star Ophiuchi by MOST spacebased photometry”, 468, 1033
  • Baron et al. (2012) Baron, F., Monnier, J. D., Pedretti, E., et al.: 2012, Imaging the Algol Triple System in the H Band with the CHARA Interferometer”, 752, 20
  • Basu (1998) Basu, S.: 1998, Effects of errors in the solar radius on helioseismic inferences”, 298, 719
  • Basu (2003) Basu, S.: 2003, Stellar Inversions”, 284, 153
  • Basu (2014) Basu, S.: 2014, Studying stars through frequency inversions”, Cambridge University Press
  • Basu (2016) Basu, S.: 2016, Global seismology of the Sun”, Living Reviews in Solar Physics 13, 2
  • Basu and Antia (1994) Basu, S. and Antia, H. M.: 1994, Effects of Diffusion on the Extent of Overshoot Below the Solar Convection Zone”, 269, 1137
  • Basu and Antia (1997) Basu, S. and Antia, H. M.: 1997, Seismic measurement of the depth of the solar convection zone”, 287, 189
  • Basu and Chaplin (2017) Basu, S. and Chaplin, W.: 2017, Asteroseismic Data Analysis: Foundations and Techniques”, Princeton University Press
  • Basu et al. (2009) Basu, S., Chaplin, W. J., Elsworth, Y., New, R., and Serenelli, A. M.: 2009, Fresh Insights on the Structure of the Solar Core”, 699, 1403
  • Basu and Christensen-Dalsgaard (1997) Basu, S. and Christensen-Dalsgaard, J.: 1997, Equation of state and helioseismic inversions.”, 322, L5
  • Basu et al. (2001) Basu, S., Christensen-Dalsgaard, J., Monteiro, M. J. P. F. G., and Thompson, M. J.: 2001, Seismology of solar-type stars” in A. Wilson and P. L. Pallé (eds.) SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millennium, Vol. 464 of ESA Special Publication, pp 407–410
  • Basu et al. (2002) Basu, S., Christensen-Dalsgaard, J., and Thompson, M. J.: 2002, SOLA inversions for the core structure of solar-type stars” in B. Battrick, F. Favata, I. W. Roxburgh, and D. Galadi (eds.) Stellar Structure and Habitable Planet Finding, Vol. 485 of ESA Special Publication, pp 249–252
  • Basu et al. (2015) Basu, S., Grevesse, N., Mathis, S., and Turck-Chièze, S.: 2015, Understanding the Internal Chemical Composition and Physical Processes of the Solar Interior”, 196, 49
  • Basu et al. (2000) Basu, S., Pinsonneault, M. H., and Bahcall, J. N.: 2000, How Much Do Helioseismological Inferences Depend on the Assumed Reference Model?”, 529, 1084
  • Batalha et al. (2011) Batalha, N. M., Borucki, W. J., Bryson, S. T., et al.: 2011, Kepler’s First Rocky Planet: Kepler-10b”, 729, 27
  • Bazot et al. (2012) Bazot, M., Bourguignon, S., and Christensen-Dalsgaard, J.: 2012, A Bayesian approach to the modelling of Cen A”, 427, 1847
  • Bedding et al. (2001) Bedding, T. R., Butler, R. P., Kjeldsen, H., et al.: 2001, Evidence for Solar-like Oscillations in Hydri”, 549, L105
  • Bellinger (2016) Bellinger, E.: 2016, asteroseismology: Fundamental Parameters of Main-Sequence Stars in an Instant with Machine Learning”, zenodo
  • Bellinger et al. (2016) Bellinger, E. P., Angelou, G. C., Hekker, S., et al.: 2016, Fundamental Parameters of Main-Sequence Stars in an Instant with Machine Learning”, 830, 31
  • Bellinger et al. (2017a) Bellinger, E. P., Angelou, G. C., Hekker, S., et al.: 2017a, Stellar Parameters in an Instant with Machine Learning. Application to Kepler LEGACY Targets” in Seismology of the Sun and the Distant Stars, Vol. 160 of European Physical Journal Web of Conferences, p. 05003
  • Bellinger et al. (2017b) Bellinger, E. P., Basu, S., Hekker, S., and Ball, W. H.: 2017b, Model-independent Measurement of Internal Stellar Structure in 16 Cygni A and B”, 851, 80
  • Bélopolsky (1895) Bélopolsky, A.: 1895, The spectrum of delta Cephei”, 1
  • Bélopolsky (1897) Bélopolsky, A.: 1897, Researches on the spectrum of the variable star eta Aquilae”, 6
  • Bengtsson (2015) Bengtsson, H.: 2015, matrixStats: Methods that Apply to Rows and Columns of Matrices (and to Vectors)”, R package version 0.14.2
  • Berkelaar and others (2015) Berkelaar, M. and others: 2015, lpSolve: Interface to lpSolve v. 5.5 to Solve Linear/Integer Programs”, R package version 5.6.12
  • Berthomieu et al. (2001) Berthomieu, G., Toutain, T., Gonczi, G., et al.: 2001, About structure inversions of simulated COROT data for a solar like star” in A. Wilson and P. L. Pallé (eds.) SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millennium, Vol. 464 of ESA Special Publication, pp 411–414
  • Bessel (1838) Bessel, F. W.: 1838, Bestimmung der Entfernung des 61sten Sterns des Schwans.”, Astronomische Nachrichten 16, 65
  • Bischl and Lang (2015) Bischl, B. and Lang, M.: 2015, parallelMap: Unified Interface to Parallelization Back-Ends”, R package version 1.3
  • Böhm-Vitense (1958) Böhm-Vitense, E.: 1958, Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen”, 46, 108
  • Bolt et al. (2007) Bolt, M., Hockey, T., Palmeri, J., et al.: 2007, Biographical Encyclopedia of Astronomers”, Springer
  • Borucki et al. (2010) Borucki, W. J., Koch, D., Basri, G., et al.: 2010, Kepler Planet-Detection Mission: Introduction and First Results”, Science 327, 977
  • Borucki et al. (2012) Borucki, W. J., Koch, D. G., Batalha, N., et al.: 2012, Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star”, 745, 120
  • Bouchy and Carrier (2001) Bouchy, F. and Carrier, F.: 2001, P-mode observations on Cen A”, 374, L5
  • Breiman (2001) Breiman, L.: 2001, Random Forests”, Machine Learning 45 (1), 5
  • Brester (1889) Brester, A.: 1889, Variable Stars and the Constitution of the Sun”, 39, 606
  • Broomhall et al. (2009) Broomhall, A.-M., Chaplin, W. J., Davies, G. R., et al.: 2009, Definitive Sun-as-a-star p-mode frequencies: 23 years of BiSON observations”, 396, L100
  • Brown (2015) Brown, E. F.: 2015, Stellar Astrophysics”, Open Astrophysics Bookshelf
  • Brown et al. (1989) Brown, T. M., Christensen-Dalsgaard, J., Dziembowski, W. A., et al.: 1989, Inferring the sun’s internal angular velocity from observed p-mode frequency splittings”, 343, 526
  • Brown et al. (1994) Brown, T. M., Christensen-Dalsgaard, J., Weibel-Mihalas, B., and Gilliland, R. L.: 1994, The effectiveness of oscillation frequencies in constraining stellar model parameters”, 427, 1013
  • Brown and Gilliland (1990) Brown, T. M. and Gilliland, R. L.: 1990, A search for solar-like oscillations in Alpha Centauri A”, 350, 839
  • Brown et al. (1991) Brown, T. M., Gilliland, R. L., Noyes, R. W., and Ramsey, L. W.: 1991, Detection of possible p-mode oscillations on Procyon”, 368, 599
  • Bruno (1584) Bruno, G.: 1584, De l’infinito, universo e mondi”, English: “On the Infinite Universe and Worlds”
  • Brunt (1913) Brunt, D.: 1913, The problem of the Cepheid variables”, The Observatory 36, 59
  • Bruntt et al. (2012) Bruntt, H., Basu, S., Smalley, B., et al.: 2012, Accurate fundamental parameters and detailed abundance patterns from spectroscopy of 93 solar-type Kepler targets”, 423, 122
  • Bruntt et al. (2010) Bruntt, H., Bedding, T. R., Quirion, P.-O., et al.: 2010, Accurate fundamental parameters for 23 bright solar-type stars”, 405, 1907
  • Buldgen et al. (2015a) Buldgen, G., Reese, D. R., and Dupret, M. A.: 2015a, Using seismic inversions to obtain an indicator of internal mixing processes in main-sequence solar-like stars”, 583, A62
  • Buldgen et al. (2016a) Buldgen, G., Reese, D. R., and Dupret, M. A.: 2016a, Constraints on the structure of 16 Cygni A and 16 Cygni B using inversion techniques”, 585, A109
  • Buldgen et al. (2015b) Buldgen, G., Reese, D. R., Dupret, M. A., and Samadi, R.: 2015b, Stellar acoustic radii, mean densities, and ages from seismic inversion techniques”, 574, A42
  • Buldgen et al. (2016b) Buldgen, G., Salmon, S. J. A. J., Reese, D. R., and Dupret, M. A.: 2016b, In-depth study of 16CygB using inversion techniques”, 596, A73
  • Burgers (1969) Burgers, J. M.: 1969, “Flow Equations for Composite Gases” Technical report, DTIC Document
  • Buzasi (2000) Buzasi, D.: 2000, Platforms of opportunity: asteroseismology by Piggyback” in R. Pallavicini, G. Micela, and S. Sciortino (eds.) Stellar Clusters and Associations: Convection, Rotation, and Dynamos, Vol. 198 of Astronomical Society of the Pacific Conference Series, p. 557
  • Buzasi et al. (2000) Buzasi, D., Catanzarite, J., Laher, R., et al.: 2000, The Detection of Multimodal Oscillations on Ursae Majoris”, 532, L133
  • Campante et al. (2015) Campante, T. L., Barclay, T., Swift, J. J., et al.: 2015, An Ancient Extrasolar System with Five Sub-Earth-size Planets”, 799, 170
  • Campante et al. (2016) Campante, T. L., Schofield, M., Kuszlewicz, J. S., et al.: 2016, The Asteroseismic Potential of TESS: Exoplanet-host Stars”, 830, 138
  • Caruana and Niculescu-Mizil (2006) Caruana, R. and Niculescu-Mizil, A.: 2006, An Empirical Comparison of Supervised Learning Algorithms” in Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pp 161–168, ACM, New York, NY, USA
  • Catelan and Smith (2015) Catelan, M. and Smith, H. A.: 2015, Pulsating Stars”, Wiley-VCH
  • Chambers (1865) Chambers, G. F.: 1865, A Catalogue of Variable Stars”, Astronomische Nachrichten 63, 117
  • Chandrasekhar (1939) Chandrasekhar, S.: 1939, An Introduction to the Study of Stellar Structure”, The University of Chicago Press
  • Chandrasekhar (1964) Chandrasekhar, S.: 1964, A General Variational Principle Governing the Radial and the Non-Radial Oscillations of Gaseous Masses”, 139, 664
  • Chaplin et al. (2010) Chaplin, W. J., Appourchaux, T., Elsworth, Y., et al.: 2010, The Asteroseismic Potential of Kepler: First Results for Solar-Type Stars”, 713, L169
  • Chaplin et al. (2014) Chaplin, W. J., Basu, S., Huber, D., et al.: 2014, Asteroseismic Fundamental Properties of Solar-type Stars Observed by the NASA Kepler Mission”, 210, 1
  • Chaplin et al. (2011) Chaplin, W. J., Kjeldsen, H., Christensen-Dalsgaard, J., et al.: 2011, Ensemble Asteroseismology of Solar-Type Stars with the NASA Kepler Mission”, Science 332, 213
  • Chaplin and Miglio (2013) Chaplin, W. J. and Miglio, A.: 2013, Asteroseismology of Solar-Type and Red-Giant Stars”, 51, 353
  • Chen et al. (2015) Chen, S., Montgomery, J., and Bolufé-Röhler, A.: 2015, Measuring the curse of dimensionality and its effects on particle swarm optimization and differential evolution”, Applied Intelligence 42 (3), 514
  • Chen et al. (2008) Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S.: 2008, Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate”, ACM Trans. Math. Softw. 35, 22:1
  • Chiappini et al. (2015) Chiappini, C., Minchev, I., Anders, F., et al.: 2015, New Observational Constraints to Milky Way Chemodynamical Models”, Astrophysics and Space Science Proceedings 39, 111
  • Christensen-Dalsgaard (1982) Christensen-Dalsgaard, J.: 1982, On solar models and their periods of oscillation”, 199, 735
  • Christensen-Dalsgaard (1984) Christensen-Dalsgaard, J.: 1984, What Will Asteroseismology Teach us” in A. Mangeney and F. Praderie (eds.) Space Research in Stellar Activity and Variability, p. 11
  • Christensen-Dalsgaard (2002) Christensen-Dalsgaard, J.: 2002, Helioseismology”, Reviews of Modern Physics 74, 1073
  • Christensen-Dalsgaard (2008) Christensen-Dalsgaard, J.: 2008, ADIPLS—the Aarhus adiabatic oscillation package”, 316, 113
  • Christensen-Dalsgaard (2012) Christensen-Dalsgaard, J.: 2012, Stellar model fits and inversions”, Astronomische Nachrichten 333, 914
  • Christensen-Dalsgaard et al. (1996) Christensen-Dalsgaard, J., Dappen, W., Ajukov, S. V., et al.: 1996, The Current State of Solar Modeling”, Science 272, 1286
  • Christensen-Dalsgaard et al. (1985) Christensen-Dalsgaard, J., Duvall, Jr., T. L., Gough, D. O., Harvey, J. W., and Rhodes, Jr., E. J.: 1985, Speed of sound in the solar interior”, 315, 378
  • Christensen-Dalsgaard and Frandsen (1983) Christensen-Dalsgaard, J. and Frandsen, S.: 1983, Stellar 5 min oscillations”, 82, 469
  • Christensen-Dalsgaard and Gough (1976) Christensen-Dalsgaard, J. and Gough, D. O.: 1976, Towards a heliological inverse problem”, 259, 89
  • Christensen-Dalsgaard and Gough (1980) Christensen-Dalsgaard, J. and Gough, D. O.: 1980, Is the sun helium-deficient”, 288, 544
  • Christensen-Dalsgaard et al. (1991) Christensen-Dalsgaard, J., Gough, D. O., and Thompson, M. J.: 1991, The depth of the solar convection zone”, 378, 413
  • Christensen-Dalsgaard et al. (1993) Christensen-Dalsgaard, J., Proffitt, C. R., and Thompson, M. J.: 1993, Effects of diffusion on solar models and their oscillation frequencies”, 403, L75
  • Claverie et al. (1979) Claverie, A., Isaak, G. R., McLeod, C. P., van der Raay, H. B., and Cortes, T. R.: 1979, Solar structure from global studies of the 5-minute oscillation”, 282, 591
  • Claverie et al. (1981) Claverie, A., Isaak, G. R., McLeod, C. P., van der Raay, H. B., and Roca Cortes, T.: 1981, Structure of the 5-minute solar oscillations - 1976-1980”, 74, 51
  • Coc et al. (2010) Coc, A., Ekström, S., Descouvemont, P., et al.: 2010, Effects of the variation of fundamental constants on Pop III stellar evolution” in American Institute of Physics Conference Series, Vol. 1269, pp 21–26
  • Coc et al. (2014) Coc, A., Uzan, J.-P., and Vangioni, E.: 2014, Standard big bang nucleosynthesis and primordial CNO abundances after Planck”, 10, 050
  • Cokelaer (2016) Cokelaer, T.: 2016, Bioinformatics in Python”, version 0.3.2
  • Collins (1989) Collins, G. W.: 1989, The Fundamentals of Stellar Astrophysics”, W. H. Freeman and Co.
  • Copernicus (1543) Copernicus, N.: 1543, De revolutionibus orbium coelestium”, English: “On the Revolutions of the Heavenly Spheres”
  • Coppersmith and Winograd (1990) Coppersmith, D. and Winograd, S.: 1990, Matrix multiplication via arithmetic progressions”, Journal of Symbolic Computation 9 (3), 251
  • Cowling (1941) Cowling, T. G.: 1941, The non-radial oscillations of polytropic stars”, 101, 367
  • Cox (1980) Cox, J. P.: 1980, Theory of Stellar Pulsation”, Princeton University Press
  • Curtiss (1905) Curtiss, R. H.: 1905, On the light- and velocity-curves of W Sagittarii”, 22
  • Däppen et al. (1991) Däppen, W., Gough, D. O., Kosovichev, A. G., and Thompson, M. J.: 1991, A New Inversion for the Hydrostatic Stratification of the Sun” in D. Gough and J. Toomre (eds.) Challenges to Theories of the Structure of Moderate-Mass Stars, Vol. 388 of Lecture Notes in Physics, Berlin Springer Verlag, p. 111
  • Darwin (1859) Darwin, C. R.: 1859, On the Origin of Species”, John Murray
  • Davies et al. (2016) Davies, G. R., Aguirre, V. S., Bedding, T. R., et al.: 2016, Oscillation frequencies for 35 Kepler solar-type planet-hosting stars using Bayesian techniques and machine learning”, 456, 2183
  • Davies et al. (2014a) Davies, G. R., Broomhall, A. M., Chaplin, W. J., Elsworth, Y., and Hale, S. J.: 2014a, Low-frequency, low-degree solar p-mode properties from 22 years of Birmingham Solar Oscillations Network data”, 439, 2025
  • Davies et al. (2015) Davies, G. R., Chaplin, W. J., Farr, W. M., et al.: 2015, Asteroseismic inference on rotation, gyrochronology and planetary system dynamics of 16 Cygni”, 446, 2959
  • Davies et al. (2014b) Davies, G. R., Handberg, R., Miglio, A., et al.: 2014b, Why should we correct reported pulsation frequencies for stellar line-of-sight Doppler velocity shifts?”, 445, L94
  • de Boor (1972) de Boor, C.: 1972, On calculating with B-splines”, Journal of Approximation Theory 6 (1), 50
  • De Lucca (1998) De Lucca, R.: 1998, Giordano Bruno: Cause, Principle and Unity: And Essays on Magic”, Cambridge University Press
  • De Ridder et al. (2009) De Ridder, J., Barban, C., Baudin, F., et al.: 2009, Non-radial oscillation modes with long lifetimes in giant stars”, 459, 398
  • Deheuvels et al. (2010) Deheuvels, S., Bruntt, H., Michel, E., et al.: 2010, Seismic and spectroscopic characterization of the solar-like pulsating CoRoT target HD 49385”, 515, A87
  • Deheuvels et al. (2014) Deheuvels, S., Doğan, G., Goupil, M. J., et al.: 2014, Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants”, 564, A27
  • Deheuvels et al. (2012) Deheuvels, S., García, R. A., Chaplin, W. J., et al.: 2012, Seismic Evidence for a Rapidly Rotating Core in a Lower-giant-branch Star Observed with Kepler”, 756, 19
  • Delmotte (2014) Delmotte, F.: 2014, Sample equidistant points from a numeric vector”, StackOverflow
  • Demarque et al. (2008) Demarque, P., Guenther, D. B., Li, L. H., Mazumdar, A., and Straka, C. W.: 2008, YREC: the Yale rotating stellar evolution code. Non-rotating version, seismology applications”, 316, 31
  • Deming (1943) Deming, W. E.: 1943, Statistical Adjustment of Data”, Wiley
  • Deubner (1975) Deubner, F.-L.: 1975, Observations of low wavenumber nonradial eigenmodes of the sun”, 44, 371
  • Deubner and Gough (1984) Deubner, F.-L. and Gough, D.: 1984, Helioseismology: Oscillations as a Diagnostic of the Solar Interior”, 22, 593
  • di Mauro (2004) di Mauro, M. P.: 2004, Theoretical Aspects of Asteroseismology: Small Steps Towards a Golden Future” in D. Danesy (ed.) SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, Vol. 559 of ESA Special Publication, p. 186
  • Di Mauro et al. (2016) Di Mauro, M. P., Ventura, R., Cardini, D., et al.: 2016, Internal Rotation of the Red-giant Star KIC 4448777 by Means of Asteroseismic Inversion”, 817, 65
  • Dirac (1938) Dirac, P. A. M.: 1938, A New Basis for Cosmology”, Proceedings of the Royal Society of London 165 (921), 199
  • Dowle et al. (2015) Dowle, M., Srinivasan, A., Short, T., with contributions from R Saporta, S. L., and Antonyan, E.: 2015, data.table: Extension of Data.frame”, R package version 1.9.6
  • Duncan (1909) Duncan, J. C.: 1909, The orbits of the Cepheid variables Y Sagittarii and RT Aurigae : with a discussion of the possible causes of this type of stellar variation”, Lick Observatory Bulletin 5, 82
  • Dunnett (1955) Dunnett, C. W.: 1955, A Multiple Comparison Procedure for Comparing Several Treatments with a Control”, Journal of the American Statistical Association 50 (272), 1096
  • Duvall et al. (1984) Duvall, Jr., T. L., Dziembowski, W. A., Goode, P. R., et al.: 1984, Internal rotation of the sun”, 310, 22
  • Dziembowski et al. (2001) Dziembowski, W. A., Gough, D. O., Houdek, G., and Sienkiewicz, R.: 2001, Oscillations of UMa and other red giants”, 328, 601
  • Dziembowski et al. (1990) Dziembowski, W. A., Pamyatnykh, A. A., and Sienkiewicz, R.: 1990, Solar model from helioseismology and the neutrino flux problem”, 244, 542
  • Eddington (1916) Eddington, A. S.: 1916, On the radiative equilibrium of the stars”, 77, 16
  • Eddington (1917) Eddington, A. S.: 1917, The pulsation theory of Cepheid variables”, The Observatory 40, 290
  • Eddington (1918) Eddington, A. S.: 1918, Stars, Gaseous, On the pulsations of a gaseous star”, 79, 2
  • Eddington (1920) Eddington, A. S.: 1920, The Internal Constitution of the Stars”, The Scientific Monthly 11, 297
  • Eddington (1924) Eddington, A. S.: 1924, On the relation between the masses and luminosities of the stars”, 84, 308
  • Eddington (1926) Eddington, A. S.: 1926, The Internal Constitution of the Stars”, Cambridge University Press
  • Edmonds and Cram (1995) Edmonds, P. D. and Cram, L. E.: 1995, A Search for Global Acoustic Oscillations on ALPHA-1-CENTAURI and Beta-Hydri”, 276, 1295
  • Eggleton and Faulkner (1981) Eggleton, P. P. and Faulkner, J.: 1981, Why Do Stars Become Red Giants?” in I. Iben and A. Renzini (eds.) Physical Processes in Red Giants, pp 179–182, Springer Netherlands, Dordrecht
  • Einstein (1905) Einstein, A.: 1905, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?”, Annalen der Physik 323, 639
  • Fabricius (1611) Fabricius, J.: 1611, De maculis in sole observatis narratio”, Wittenberga
  • Fai et al. (2017) Fai, K., Wei, Q., Carin, L., and Heller, K.: 2017, An inner-loop free solution to inverse problems using deep neural networks” in NIPS 2017
  • Fath (1935) Fath, E. A.: 1935, A photometric study of delta Scuti”, Lick Observatory Bulletin 17, 175
  • Flamsteed (1725) Flamsteed, J.: 1725, Historia Coelestis Britannica
  • Fox and Kerr (2000) Fox, P. A. and Kerr, R. M.: 2000, Geophysical & Astrophysical Convection”, CRC Press
  • Frandsen et al. (2002) Frandsen, S., Carrier, F., Aerts, C., et al.: 2002, Detection of Solar-like oscillations in the G7 giant star Hya”, 394, L5
  • Frazier (1968) Frazier, E. N.: 1968, An Observational Study of the Hydrodynamics of the Lower Solar Photosphere”, 152, 557
  • Frost (1908) Frost, E. B.: 1908, Hermann Carl Vogel”, 27, 1
  • Gai et al. (2011) Gai, N., Basu, S., Chaplin, W. J., and Elsworth, Y.: 2011, An In-depth Study of Grid-based Asteroseismic Analysis”, 730, 63
  • Gaia Collaboration et al. (2016) Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al.: 2016, Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties”, 595, A2
  • Galilei (1610) Galilei, G.: 1610, Sidereus Nuncius”, English: “Starry Messenger”
  • Gallart et al. (2005) Gallart, C., Zoccali, M., and Aparicio, A.: 2005, The Adequacy of Stellar Evolution Models for the Interpretation of the Color-Magnitude Diagrams of Resolved Stellar Populations”, 43, 387
  • Gamow (1928) Gamow, G.: 1928, The Quantum Theory of Nuclear Disintegration”, 122, 805
  • Gamow (1938) Gamow, G.: 1938, Tracks of Stellar Evolution”, Physical Review 53, 907
  • Gaulme et al. (2016) Gaulme, P., McKeever, J., Jackiewicz, J., et al.: 2016, Testing the Asteroseismic Scaling Relations for Red Giants with Eclipsing Binaries Observed by Kepler”, 832, 121
  • Gelly et al. (1986) Gelly, B., Grec, G., and Fossat, E.: 1986, Evidence for global pressure oscillations in Procyon and Alpha Centauri”, 164, 383
  • Geurts et al. (2006) Geurts, P., Ernst, D., and Wehenkel, L.: 2006, Extremely Randomized Trees”, Machine Learning 63 (1), 3
  • Giles (2000) Giles, P. M.: 2000, Time-distance measurements of large-scale flows in the solar convection zone”, Ph.D. thesis, Stanford University
  • Gilliland et al. (2010) Gilliland, R. L., Brown, T. M., Christensen-Dalsgaard, J., et al.: 2010, Kepler Asteroseismology Program: Introduction and First Results”, 122, 131
  • Goldreich and Keeley (1977) Goldreich, P. and Keeley, D. A.: 1977, Solar seismology. II - The stochastic excitation of the solar p-modes by turbulent convection”, 212, 243
  • Gontcharov (2006) Gontcharov, G. A.: 2006, Pulkovo Compilation of Radial Velocities for 35 495 Hipparcos stars in a common system”, Astronomy Letters 32, 759
  • Goodricke (1783) Goodricke, J.: 1783, A Series of Observations on, and a Discovery of, the Period of the Variation of the Light of the Bright Star in the Head of Medusa, Called Algol. In a Letter from John Goodricke, Esq. to the Rev. Anthony Shepherd, D. D. F. R. S. and Plumian Professor at Cambridge”, Philosophical Transactions of the Royal Society of London 73, 474
  • Goodricke (1784) Goodricke, J.: 1784, On the Periods of the Changes of Light in the Star Algol. In a Letter from John Goodricke, Esq. to the Rev. Anthony Shepherd, D. D. F. R. S. Professor of Astronomy at Cambridge”, Philosophical Transactions of the Royal Society of London 74, 287
  • Goodricke (1786) Goodricke, J.: 1786, A Series of Observations on, and a Discovery of, the Period of the Variation of the Light of the Star Marked δ by Bayer, Near the Head of Cepheus. In a Letter from John Goodricke, Esq. to Nevil Maskelyne, D. D. F. R. S. and Astronomer Royal”, Philosophical Transactions of the Royal Society of London 76, 48
  • Gordon and Webb (1996) Gordon, C. and Webb, D.: 1996, You Can’t Hear the Shape of a Drum”, American Scientist 84 (1), 46
  • Gough (1985) Gough, D.: 1985, Inverting helioseismic data”, 100, 65
  • Gough and Toomre (1991) Gough, D. and Toomre, J.: 1991, Seismic observations of the solar interior”, 29, 627
  • Gough (1981) Gough, D. O.: 1981, A new measure of the solar rotation”, 196, 731
  • Gough (1993) Gough, D. O.: 1993, Linear adiabatic stellar pulsation.” in J.-P. Zahn and J. Zinn-Justin (eds.) Astrophysical Fluid Dynamics - Les Houches 1987, pp 399–560
  • Gough (1998) Gough, D. O.: 1998, Inversion for the internal structure and rotation of the Sun and other sun-like stars” in H. Kjeldsen and T. R. Bedding (eds.) The First MONS Workshop: Science with a Small Space Telescope, p. 33
  • Gough and Kosovichev (1993) Gough, D. O. and Kosovichev, A. G.: 1993, Initial asteroseismic inversions” in W. W. Weiss and A. Baglin (eds.) IAU Colloq. 137: Inside the Stars, Vol. 40 of Astronomical Society of the Pacific Conference Series, p. 541
  • Gough and Thompson (1991) Gough, D. O. and Thompson, M. J.: 1991, The Inversion Problem”, University of Arizona Press
  • Grec et al. (1980) Grec, G., Fossat, E., and Pomerantz, M.: 1980, Solar oscillations - Full disk observations from the geographic South Pole”, 288, 541
  • Grevesse and Sauval (1998) Grevesse, N. and Sauval, A. J.: 1998, Standard Solar Composition”, 85, 161
  • Grundahl et al. (2017) Grundahl, F., Fredslund Andersen, M., Christensen-Dalsgaard, J., et al.: 2017, First Results from the Hertzsprung SONG Telescope: Asteroseismology of the G5 Subgiant Star Herculis”, 836, 142
  • Guggenberger et al. (2017) Guggenberger, E., Hekker, S., Angelou, G. C., Basu, S., and Bellinger, E. P.: 2017, Mitigating the mass dependence in the scaling relation of red giant stars”, 470, 2069
  • Guggenberger et al. (2016) Guggenberger, E., Hekker, S., Basu, S., and Bellinger, E.: 2016, Significantly improving stellar mass and radius estimates: a new reference function for the scaling relation”, 460, 4277
  • Haberreiter et al. (2008) Haberreiter, M., Schmutz, W., and Kosovichev, A. G.: 2008, Solving the Discrepancy between the Seismic and Photospheric Solar Radius”, 675, L53
  • Hadamard (1902) Hadamard, J.: 1902, “Sur les problèmes aux dérivés partielles et leur signification physique”, Princeton University Bulletin 13, 49
  • Hampel (1971) Hampel, F. R.: 1971, A general qualitative definition of robustness”, The Annals of Mathematical Statistics pp 1887–1896
  • Han et al. (2014) Han, E., Wang, S. X., Wright, J. T., et al.: 2014, Exoplanet Orbit Database. II. Updates to Exoplanets.org”, 126, 827
  • Hansen and Kawaler (1994) Hansen, C. J. and Kawaler, S. D.: 1994, Stellar Interiors. Physical Principles, Structure, and Evolution.”, Springer-Verlag
  • Hart (1954) Hart, A. B.: 1954, Motions in the Sun at the photospheric level. IV. The equatorial rotation and possible velocity fields in the photosphere”, 114, 17
  • Hart (1956) Hart, A. B.: 1956, Motions in the Sun at the photospheric level. VI. Large-scale motions in the equatorial region”, 116, 38
  • Hastie et al. (2009) Hastie, T., Tibshirani, R., and Friedman, J.: 2009, The Elements of Statistical Learning”, Springer
  • Hekker (2013) Hekker, S.: 2013, CoRoT and Kepler results: Solar-like oscillators”, Advances in Space Research 52, 1581
  • Hekker et al. (2010) Hekker, S., Broomhall, A.-M., Chaplin, W. J., et al.: 2010, The Octave (Birmingham-Sheffield Hallam) automated pipeline for extracting oscillation parameters of solar-like main-sequence stars”, 402, 2049
  • Hekker and Christensen-Dalsgaard (2017) Hekker, S. and Christensen-Dalsgaard, J.: 2017, Giant star seismology”, 25, 1
  • Hekker et al. (2009) Hekker, S., Kallinger, T., Baudin, F., et al.: 2009, Characteristics of solar-like oscillations in red giants observed in the CoRoT exoplanet field”, 506, 465
  • Hekker et al. (2006) Hekker, S., Reffert, S., Quirrenbach, A., et al.: 2006, Precise radial velocities of giant stars. I. Stable stars”, 454, 943
  • Henyey et al. (1959) Henyey, L. G., Wilets, L., Böhm, K. H., Lelevier, R., and Levee, R. D.: 1959, A Method for Automatic Computation of Stellar Evolution.”, 129, 628
  • Hertzsprung (1905) Hertzsprung, E.: 1905, Zur Stralung Der Strerne”, Zeitschrift Fur Wissenschaftliche Photographie, Vol 3, p. 442-449 3, 442
  • Hertzsprung (1907) Hertzsprung, E.: 1907, Zur Stralung Der Strerne”, Zeitschrift Fur Wissenschaftliche Photographie, Vol 5, p. 86-107 5, 86
  • Hertzsprung (1911) Hertzsprung, E.: 1911, Nachweis der Veränderlichkeit von Ursae minoris”, Astronomische Nachrichten 189, 89
  • Hertzsprung (1913) Hertzsprung, E.: 1913, Über die räumliche Verteilung der Veränderlichen vom Cephei-Typus”, Astronomische Nachrichten 196, 201
  • Hevelius (1662) Hevelius, J.: 1662, Mercurius in Sole visus Gedani
  • Hevelius (1671) Hevelius, J.: 1671, An Extract of a Letter, Written to the Publisher by the Excellent Johannes Hevelius, Concerning, His Further Observations of the New Star Near the Beak of the Swan; To be Compared with What Was Formerly Published of the Same Argument in Numb. 65. and Numb. 66”, Philosophical Transactions (1665-1678) 6, 2197
  • Hoffleit (1997) Hoffleit, D.: 1997, History of the Discovery of Mira Stars”, Journal of the American Association of Variable Star Observers (JAAVSO) 25, 115
  • Houdek et al. (2017) Houdek, G., Trampedach, R., Aarslev, M. J., and Christensen-Dalsgaard, J.: 2017, On the surface physics affecting solar oscillation frequencies”, 464, L124
  • Howe (2009) Howe, R.: 2009, Solar Interior Rotation and its Variation”, Living Reviews in Solar Physics 6, 1
  • Howell et al. (2014) Howell, S. B., Sobeck, C., Haas, M., et al.: 2014, The K2 Mission: Characterization and Early Results”, 126, 398
  • Hubble (1929) Hubble, E.: 1929, A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae”, Proceedings of the National Academy of Science 15, 168
  • Hubble (1925) Hubble, E. P.: 1925, Cepheids in spiral nebulae”, The Observatory 48, 139
  • Huber et al. (2013) Huber, D., Carter, J. A., Barbieri, M., et al.: 2013, Stellar Spin-Orbit Misalignment in a Multiplanet System”, Science 342, 331
  • Huber et al. (2012) Huber, D., Ireland, M. J., Bedding, T. R., et al.: 2012, Fundamental Properties of Stars Using Asteroseismology from Kepler and CoRoT and Interferometry from the CHARA Array”, 760, 32
  • Huber et al. (2009) Huber, D., Stello, D., Bedding, T. R., et al.: 2009, Automated extraction of oscillation parameters for Kepler observations of solar-type stars”, Communications in Asteroseismology 160, 74
  • Hund (1927) Hund, F.: 1927, Zur deutung der molekelspektren. I”, Zeitschrift für Physik 40 (10), 742
  • Hunter (2007) Hunter, J. D.: 2007, Matplotlib: A 2D graphics environment”, Computing In Science & Engineering 9 (3), 90
  • Huygens (1698) Huygens, C.: 1698, Cosmotheoros: The Celestial Worlds discover’d: Or, Conjectures concerning the inhabitants, plants and productions of the worlds in the planets
  • Iglesias and Rogers (1996) Iglesias, C. A. and Rogers, F. J.: 1996, Updated Opal Opacities”, 464, 943
  • Innis et al. (1991) Innis, J. L., Isaak, G. R., Speake, C. C., Williams, H. K., and Brazier, R. I.: 1991, High-precision velocity observations of Procyon A. I - Search for p-mode oscillations from 1988, 1989 and 1990 observations”, 249, 643
  • Itoh et al. (1996) Itoh, N., Hayashi, H., Nishikawa, A., and Kohyama, Y.: 1996, Neutrino Energy Loss in Stellar Interiors. VII. Pair, Photo-, Plasma, Bremsstrahlung, and Recombination Neutrino Processes”, 102, 411
  • Jeans (1919) Jeans, J. H.: 1919, The problem of the Cepheid variables”, The Observatory 42, 88
  • Jeans (1928) Jeans, J. H.: 1928, Liquid Stars”, 121, 173
  • Jetsu and Porceddu (2015) Jetsu, L. and Porceddu, S.: 2015, Shifting Milestones of Natural Sciences: The Ancient Egyptian Discovery of Algol’s Period Confirmed”, PloS One 10 (12), e0144140
  • Jin et al. (2017) Jin, K. H., McCann, M. T., Froustey, E., and Unser, M.: 2017, Deep convolutional neural network for inverse problems in imaging”, IEEE Transactions on Image Processing 26 (9), 4509
  • Kac (1966) Kac, M.: 1966, Can One Hear the Shape of a Drum?”, The American Mathematical Monthly 73 (4), 1
  • Kafka (2017) Kafka, S.: 2017, The American Association of Variable Star Observers (AAVSO)
  • KASOC (2018) KASOC: 2018, Kepler Asteroseismic Science Operations Center
  • Kelvin (1895) Kelvin: 1895, The Age of the Earth”, 51, 438
  • Kepler (1609) Kepler, J.: 1609, Astronomia nova”, English: “New Astronomy”
  • Kippenhahn and Weigert (1990) Kippenhahn, R. and Weigert, A.: 1990, Stellar Structure and Evolution”, Springer-Verlag
  • Kippenhahn et al. (2012) Kippenhahn, R., Weigert, A., and Weiss, A.: 2012, Stellar Structure and Evolution”, Springer-Verlag
  • Kirsch (2011) Kirsch, A.: 2011, An introduction to the mathematical theory of inverse problems”, Springer Science & Business Media
  • Kjeldsen and Bedding (1995) Kjeldsen, H. and Bedding, T. R.: 1995, Amplitudes of stellar oscillations: the implications for asteroseismology.”, 293, 87
  • Kjeldsen et al. (2008) Kjeldsen, H., Bedding, T. R., and Christensen-Dalsgaard, J.: 2008, Correcting Stellar Oscillation Frequencies for Near-Surface Effects”, 683, L175
  • Koch et al. (2004) Koch, D. G., Borucki, W., Dunham, E., et al.: 2004, Overview and status of the Kepler Mission” in J. C. Mather (ed.) Optical, Infrared, and Millimeter Space Telescopes, Vol. 5487 of , pp 1491–1500
  • Koch et al. (2010) Koch, D. G., Borucki, W. J., Basri, G., et al.: 2010, Kepler Mission Design, Realized Photometric Performance, and Early Science”, 713, L79
  • Kosovichev (1999) Kosovichev, A. G.: 1999, Inversion methods in helioseismology and solar tomography”, Journal of Computational and Applied Mathematics 109, 1
  • Kosovichev (2011) Kosovichev, A. G.: 2011, Advances in Global and Local Helioseismology: An Introductory Review” in J.-P. Rozelot and C. Neiner (eds.) Lecture Notes in Physics, Berlin Springer Verlag, Vol. 832
  • Krasinsky and Brumberg (2004) Krasinsky, G. A. and Brumberg, V. A.: 2004, Secular increase of astronomical unit from analysis of the major planet motions, and its interpretation”, Celestial Mechanics and Dynamical Astronomy 90, 267
  • Krishnamoorthy and Menon (2013) Krishnamoorthy, A. and Menon, D.: 2013, Matrix inversion using Cholesky decomposition” in 2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), pp 70–72
  • Kullback and Leibler (1951) Kullback, S. and Leibler, R. A.: 1951, On Information and Sufficiency”, The Annals of Mathematical Statistics 22 (1), 79
  • Lane (1870) Lane, H. J.: 1870, On the theoretical temperature of the Sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment”, American Journal of Science 50, 57
  • Langford et al. (2001) Langford, E., Schwertman, N., and Owens, M.: 2001, Is the Property of Being Positively Correlated Transitive?”, The American Statistician 55 (4), 322
  • Larsson et al. (2016) Larsson, G., Maire, M., and Shakhnarovich, G.: 2016, Learning representations for automatic colorization” in

    European Conference on Computer Vision

    , pp 577–593, Springer
  • Latham et al. (2002) Latham, D. W., Stefanik, R. P., Torres, G., et al.: 2002, A Survey of Proper-Motion Stars. XVI. Orbital Solutions for 171 Single-lined Spectroscopic Binaries”, 124, 1144
  • Leavitt (1908) Leavitt, H. S.: 1908, 1777 variables in the Magellanic Clouds”, Annals of Harvard College Observatory 60, 87
  • Leavitt (1912) Leavitt, H. S.: 1912, Periods of 25 Variable Stars in the Small Magellanic Cloud”, Harvard College Observatory Circular 173, 1
  • Lebreton and Goupil (2014) Lebreton, Y. and Goupil, M. J.: 2014, Asteroseismology for ”à la carte” stellar age-dating and weighing. Age and mass of the CoRoT exoplanet host HD 52265”, 569, A21
  • Ledoux and Walraven (1958) Ledoux, P. and Walraven, T.: 1958, Variable Stars”, Handbuch der Physik 51, 353
  • Leibacher and Stein (1971) Leibacher, J. W. and Stein, R. F.: 1971, A New Description of the Solar Five-Minute Oscillation”, 7, 191
  • Leighton et al. (1962) Leighton, R. B., Noyes, R. W., and Simon, G. W.: 1962, Velocity Fields in the Solar Atmosphere. I. Preliminary Report”, 135, 474
  • Levenberg (1944) Levenberg, K.: 1944, A method for the solution of certain non-linear problems in least squares”, Quarterly of Applied Mathematics 2 (2), 164
  • Louppe (2014) Louppe, G.: 2014, Understanding Random Forests: From Theory to Practice”, Ph.D. thesis, University of Liege, Belgium
  • Lund et al. (2014) Lund, M. N., Kjeldsen, H., Christensen-Dalsgaard, J., Handberg, R., and Silva Aguirre, V.: 2014, Detection of and Modes in Years of Solar VIRGO-SPM Data—Tests on Kepler Observations of 16 Cyg A and B”, 782, 2
  • Lund et al. (2017) Lund, M. N., Silva Aguirre, V., Davies, G. R., et al.: 2017, Standing on the Shoulders of Dwarfs: the Kepler Asteroseismic LEGACY Sample. I. Oscillation Mode Parameters”, 835, 172
  • Lynden-Bell and Ostriker (1967) Lynden-Bell, D. and Ostriker, J. P.: 1967, On the stability of differentially rotating bodies”, 136, 293
  • Mahalanobis (1936) Mahalanobis, P. C.: 1936, On the generalized distance in statistics”, Proceedings of the National Institute of Sciences (Calcutta) 2, 49
  • Maldonado et al. (2013) Maldonado, J., Villaver, E., and Eiroa, C.: 2013, The metallicity signature of evolved stars with planets”, 554, A84
  • Mamajek et al. (2015) Mamajek, E. E., Prsa, A., Torres, G., et al.: 2015, IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties”, ArXiv e-prints
  • Marcy et al. (2014) Marcy, G. W., Isaacson, H., Howard, A. W., et al.: 2014, Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets”, 210, 20
  • Marquardt (1963) Marquardt, D. W.: 1963, An Algorithm for Least-Squares Estimation of Nonlinear Parameters”, Journal of the Society for Industrial and Applied Mathematics 11 (2), 431
  • Mathur et al. (2010) Mathur, S., García, R. A., Régulo, C., et al.: 2010, Determining global parameters of the oscillations of solar-like stars”, 511, A46
  • Mathur et al. (2012) Mathur, S., Metcalfe, T. S., Woitaszek, M., et al.: 2012, A Uniform Asteroseismic Analysis of 22 Solar-type Stars Observed by Kepler”, 749, 152
  • Mazumdar et al. (2014) Mazumdar, A., Monteiro, M. J. P. F. G., Ballot, J., et al.: 2014, Measurement of Acoustic Glitches in Solar-type Stars from Oscillation Frequencies Observed by Kepler”, 782, 18
  • McKinney (2010) McKinney, W.: 2010, Data structures for statistical computing in Python” in Proceedings of the 9th Python in Science Conference, Vol. 445, pp 51–56
  • Metcalfe et al. (2012) Metcalfe, T. S., Chaplin, W. J., Appourchaux, T., et al.: 2012, Asteroseismology of the Solar Analogs 16 Cyg A and B from Kepler Observations”, 748, L10
  • Metcalfe et al. (2009) Metcalfe, T. S., Creevey, O. L., and Christensen-Dalsgaard, J.: 2009, A Stellar Model-fitting Pipeline for Asteroseismic Data from the Kepler Mission”, 699, 373
  • Metcalfe et al. (2015) Metcalfe, T. S., Creevey, O. L., and Davies, G. R.: 2015, Asteroseismic Modeling of 16 Cyg A and B using the Complete Kepler Data Set”, 811, L37
  • Metcalfe et al. (2014) Metcalfe, T. S., Creevey, O. L., Doğan, G., et al.: 2014, Properties of 42 Solar-type Kepler Targets from the Asteroseismic Modeling Portal”, 214, 27
  • Michell (1759) Michell, J.: 1759, LV. Conjectures concerning the cause, and observations upon the phænomena of earthquakes; particularly of that great earthquake of the first November, 1755, which proved so fatal to the city of Lisbon, and whose effects were felt as far as africa and more or less throughout almost all Europe; by the Reverend John Michell, M. A. Fellow of Queen’s College, Cambridge”, Philosophical Transactions 51, 566
  • Michell (1767) Michell, J.: 1767, An Inquiry into the Probable Parallax, and Magnitude of the Fixed Stars, from the Quantity of Light Which They Afford us, and the Particular Circumstances of Their Situation, by the Rev. John Michell, B. D. F. R. S.”, Philosophical Transactions (1683-1775) 57, 234
  • Miglio et al. (2013) Miglio, A., Chiappini, C., Morel, T., et al.: 2013, Galactic archaeology: mapping and dating stellar populations with asteroseismology of red-giant stars”, 429, 423
  • Mohr et al. (2016) Mohr, P. J., Newell, D. B., and Taylor, B. N.: 2016, CODATA recommended values of the fundamental physical constants: 2014*”, Reviews of Modern Physics 88 (3), 035009
  • Morel and Thévenin (2002) Morel, P. and Thévenin, F.: 2002, Atomic diffusion in star models of type earlier than G”, 390, 611
  • Mosser and Appourchaux (2009) Mosser, B. and Appourchaux, T.: 2009, On detecting the large separation in the autocorrelation of stellar oscillation times series”, 508, 877
  • Mosser et al. (2012) Mosser, B., Elsworth, Y., Hekker, S., et al.: 2012, Characterization of the power excess of solar-like oscillations in red giants with Kepler”, 537, A30
  • Mosser et al. (2013) Mosser, B., Michel, E., Belkacem, K., et al.: 2013, Asymptotic and measured large frequency separations”, 550, A126
  • Murtagh and Heck (1987) Murtagh, F. and Heck, A. (eds.): 1987, Multivariate Data Analysis”, Vol. 131 of Astrophysics and Space Science Library
  • Nelder and Mead (1965) Nelder, J. A. and Mead, R.: 1965, A simplex method for function minimization”, The Computer Journal 7 (4), 308
  • Neto and Neto (2012) Neto, F. D. M. and Neto, A. J. d. S.: 2012, An introduction to inverse problems with applications”, Springer Science & Business Media
  • Neuwirth (2014) Neuwirth, E.: 2014, RColorBrewer: ColorBrewer Palettes”, R package version 1.1-2
  • Newton (1686) Newton, I.: 1686, PhilosophiæNaturalis Principia Mathematica”, English: “The Mathematical Principles of Natural Philosophy”
  • Nidever et al. (2002) Nidever, D. L., Marcy, G. W., Butler, R. P., Fischer, D. A., and Vogt, S. S.: 2002, Radial Velocities for 889 Late-Type Stars”, 141, 503
  • Nimtz and Clegg (2009) Nimtz, G. and Clegg, B.: 2009, Tunneling”, Springer Berlin Heidelberg
  • Öpik (1938) Öpik, E.: 1938, Stellar Structure, Source of Energy, and Evolution”, Publications of the Tartu Astrofizica Observatory 30, C1
  • O’Sullivan et al. (1986) O’Sullivan, F., Yandell, B. S., and Raynor Jr, W. J.: 1986, Automatic smoothing of regression functions in generalized linear models”, Journal of the American Statistical Association 81 (393), 96
  • Ovid (8 AD) Ovid: 8 AD, Metamorphoseon libri”, English: “Metamorphoses”
  • Pál et al. (2008) Pál, A., Bakos, G. Á., Torres, G., et al.: 2008, HAT-P-7b: An Extremely Hot Massive Planet Transiting a Bright Star in the Kepler Field”, 680, 1450
  • Paxton et al. (2011) Paxton, B., Bildsten, L., Dotter, A., et al.: 2011, Modules for Experiments in Stellar Astrophysics (MESA)”, 192, 3
  • Paxton et al. (2013) Paxton, B., Cantiello, M., Arras, P., et al.: 2013, Modules for Experiments in Stellar Astrophysics (MESA): Planets, Oscillations, Rotation, and Massive Stars”, 208, 4
  • Paxton et al. (2015) Paxton, B., Marchant, P., Schwab, J., et al.: 2015, Modules for Experiments in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions”, 220, 15
  • Paxton et al. (2018) Paxton, B., Schwab, J., Bauer, E. B., et al.: 2018, Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions”, 234, 34
  • Payne (1925) Payne, C. H.: 1925, Stellar Atmospheres; a Contribution to the Observational Study of High Temperature in the Reversing Layers of Stars”, Ph.D. thesis, Radcliffe College
  • Pedregosa et al. (2011) Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: 2011, “Scikit-learn: Machine Learning in Python”, Journal of Machine Learning Research 12, 2825
  • Pekeris (1938) Pekeris, C. L.: 1938, Nonradial Oscillations of Stars.”, 88, 189
  • Pigott (1785) Pigott, E.: 1785, Observations of a New Variable Star. In a Letter from Edward Pigott, Esq. to Sir H. C. Englefield, Bart. F. R. S. and A. S.”, Philosophical Transactions of the Royal Society of London Series I 75, 127
  • Pigott (1786) Pigott, E.: 1786, Observations and Remarks on Those Stars Which the Astronomers of the Last Century Suspected to be Changeable. By Edward Pigott, Esq.; Communicated by Sir Henry C. Englefield, Bart. F. R. S. and A. S.”, Philosophical Transactions of the Royal Society of London 76, 189
  • Pijpers and Thompson (1992) Pijpers, F. P. and Thompson, M. J.: 1992, Faster formulations of the optimally localized averages method for helioseismic inversions”, 262, L33
  • Pijpers and Thompson (1994) Pijpers, F. P. and Thompson, M. J.: 1994, The SOLA method for helioseismic inversion”, 281, 231
  • Pinsonneault et al. (2012) Pinsonneault, M. H., An, D., Molenda-Żakowicz, J., et al.: 2012, A Revised Effective Temperature Scale for the Kepler Input Catalog”, 199, 30
  • Pitjeva (2015) Pitjeva, E.: 2015, Determination of the Value of the Heliocentric Gravitational Constant (GM) from Modern Observations of Planets and Spacecraft”, Journal of Physical and Chemical Reference Data 44 (3), 031210
  • Plaskett (1916) Plaskett, H. H.: 1916, A Variation in the Solar Rotation”, 43, 145
  • Plummer (1914) Plummer, H. G.: 1914, Note on the velocity of light and Doppler’s principle”, 74, 660
  • Pols (2011) Pols, O. R.: 2011, Stellar Structure and Evolution”, Astronomical Institute Utrecht
  • Pottasch et al. (1992) Pottasch, E. M., Butcher, H. R., and van Hoesel, F. H. J.: 1992, Solar-like oscillations on Alpha Centauri A”, 264, 138
  • Prato and Zanni (2008) Prato, M. and Zanni, L.: 2008, Inverse problems in machine learning: an application to brain activity interpretation” in Journal of Physics: Conference Series, Vol. 135, p. 012085
  • Pulone and Scaramella (1997) Pulone, L. and Scaramella, R.: 1997, Age estimates of stellar systems by Artificial Neural Networks”, in Neural Nets WIRN VIETRI-96, pp 231–236, Springer
  • Quirion et al. (2010) Quirion, P.-O., Christensen-Dalsgaard, J., and Arentoft, T.: 2010, Automatic Determination of Stellar Parameters Via Asteroseismology of Stochastically Oscillating Stars: Comparison with Direct Measurements”, 725, 2176
  • R Core Team (2014) R Core Team: 2014, R: A Language and Environment for Statistical Computing”, R Foundation for Statistical Computing
  • Rabello-Soares et al. (1998) Rabello-Soares, M. C., Basu, S., and Christensen-Dalsgaard, J.: 1998, A Study of the Parameters for Solar Structure Inversion Methods” in S. Korzennik (ed.) Structure and Dynamics of the Interior of the Sun and Sun-like Stars, Vol. 418 of ESA Special Publication, p. 505
  • Rabello-Soares et al. (1999) Rabello-Soares, M. C., Basu, S., and Christensen-Dalsgaard, J.: 1999, On the choice of parameters in solar-structure inversion”, 309, 35
  • Ramírez et al. (2009) Ramírez, I., Meléndez, J., and Asplund, M.: 2009, Accurate abundance patterns of solar twins and analogs. Does the anomalous solar chemical composition come from planet formation?”, 508, L17
  • Rauer et al. (2014) Rauer, H., Catala, C., Aerts, C., et al.: 2014, The PLATO 2.0 mission”, Experimental Astronomy 38, 249
  • Reese et al. (2014) Reese, D., Zharkov, S., and Buldgeon, G.: 2014, InversionKit
  • Reese (2018) Reese, D. R.: 2018, Stellar Inversion Techniques”, Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds 49, 75
  • Reese et al. (2016) Reese, D. R., Chaplin, W. J., Davies, G. R., et al.: 2016, SpaceInn hare-and-hounds exercise: Estimation of stellar properties using space-based asteroseismic data”, 592, A14
  • Reese et al. (2012) Reese, D. R., Marques, J. P., Goupil, M. J., Thompson, M. J., and Deheuvels, S.: 2012, Estimating stellar mean density through seismic inversions”, 539, A63
  • Renzini et al. (1992) Renzini, A., Greggio, L., Ritossa, C., and Ferrario, L.: 1992, Why stars inflate to and deflate from red giant dimensions”, 400, 280
  • Rhodes et al. (1997) Rhodes, Jr., E. J., Kosovichev, A. G., Schou, J., Scherrer, P. H., and Reiter, J.: 1997, Measurements of Frequencies of Solar Oscillations from the MDI Medium-l Program”, 175, 287
  • Rhodes et al. (1977) Rhodes, Jr., E. J., Ulrich, R. K., and Simon, G. W.: 1977, Observations of nonradial p-mode oscillations on the sun”, 218, 901
  • Ricker et al. (2010) Ricker, G. R., Latham, D. W., Vanderspek, R. K., et al.: 2010, Transiting Exoplanet Survey Satellite (TESS)” in American Astronomical Society Meeting Abstracts #215, Vol. 42 of Bulletin of the American Astronomical Society, p. 459
  • Ricker et al. (2015) Ricker, G. R., Winn, J. N., Vanderspek, R., et al.: 2015, Transiting Exoplanet Survey Satellite (TESS)”, Journal of Astronomical Telescopes, Instruments, and Systems 1 (1), 014003
  • Ritter (1880) Ritter, G. A. D.: 1880, “Untersuchungen über die Höhe der Atmosphäre und die Constitution gasförmiger Weltkörper”, Wiedemann Annalen
  • Robotham (2015) Robotham, A.: 2015, magicaxis: Pretty Scientific Plotting with Minor-Tick and log Minor-Tick Support”, R package version 1.9.4
  • Robotham (2016) Robotham, A.: 2016, magicaxis: Pretty Scientific Plotting with Minor-Tick and log Minor-Tick Support”, R package version 2.0.0
  • Rogers and Nayfonov (2002) Rogers, F. J. and Nayfonov, A.: 2002, Updated and Expanded OPAL Equation-of-State Tables: Implications for Helioseismology”, 576, 1064
  • Rosasco et al. (2005) Rosasco, L., Caponnetto, A., Vito, E. D., Odone, F., and Giovannini, U. D.: 2005, Learning, regularization and ill-posed inverse problems” in Advances in Neural Information Processing Systems, pp 1145–1152
  • Rosenthal et al. (1999) Rosenthal, C. S., Christensen-Dalsgaard, J., Nordlund, Å., Stein, R. F., and Trampedach, R.: 1999, Convective contributions to the frequencies of solar oscillations”, 351, 689
  • Rosseland (1949) Rosseland, S.: 1949, The Pulsation Theory of Variable Stars”, Princeton University Observatory
  • Roxburgh and Vorontsov (2003) Roxburgh, I. W. and Vorontsov, S. V.: 2003, The ratio of small to large separations of acoustic oscillations as a diagnostic of the interior of solar-like stars”, 411, 215
  • Russell (1913a) Russell, H. N.: 1913a, “Giant” and “dwarf” stars”, The Observatory 36, 324
  • Russell (1913b) Russell, H. N.: 1913b, Notes on the Real Brightness of Variable Stars”, Science 37, 651
  • Russell (1914) Russell, H. N.: 1914, Relations Between the Spectra and other Characteristics of the Stars. II. Brightness and Spectral Class”, 93, 252
  • Salaris and Cassisi (2005) Salaris, M. and Cassisi, S.: 2005, Evolution of Stars and Stellar Populations”, Wiley
  • Samadi et al. (2015) Samadi, R., Belkacem, K., and Sonoi, T.: 2015, Stellar oscillations - II - The non-adiabatic case” in EAS Publications Series, Vol. 73 of EAS Publications Series, pp 111–191
  • Sampson (1895) Sampson, R. A.: 1895, On the Rotation and Mechanical State of the Sun”, 51, 123
  • Samus’ et al. (2017) Samus’, N. N., Kazarovets, E. V., Durlevich, O. V., Kireeva, N. N., and Pastukhova, E. N.: 2017, General catalogue of variable stars: Version GCVS 5.1”, Astronomy Reports 61 (1), 80
  • Schatzman (1958) Schatzman, E. L.: 1958, White dwarfs”, Interscience
  • Schlemper et al. (2017) Schlemper, J., Caballero, J., Hajnal, J. V., Price, A., and Rueckert, D.: 2017, A Deep Cascade of Convolutional Neural Networks for MR Image Reconstruction”, ArXiv e-prints
  • Schloerke et al. (2014) Schloerke, B., Crowley, J., Cook, D., et al.: 2014, GGally: Extension to ggplot2”, R package version 0.5.0
  • Schmitt and Basu (2015) Schmitt, J. R. and Basu, S.: 2015, Modeling the Asteroseismic Surface Term across the HR Diagram”, 808, 123
  • Schou et al. (1998) Schou, J., Antia, H. M., Basu, S., et al.: 1998, Helioseismic Studies of Differential Rotation in the Solar Envelope by the Solar Oscillations Investigation Using the Michelson Doppler Imager”, 505, 390
  • Schou and Buzasi (2001) Schou, J. and Buzasi, D. L.: 2001, Observations of p-modes in Cen” in A. Wilson and P. L. Pallé (eds.) SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millennium, Vol. 464 of ESA Special Publication, pp 391–394
  • Schwarzschild (1906) Schwarzschild, K.: 1906, Über das Gleichgewicht der Sonnenatmosphäre”, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1906, 41
  • Schwarzschild (1958) Schwarzschild, M.: 1958, Structure and evolution of the stars.”, Princeton University Press
  • Secchi (1877) Secchi, P. A.: 1877, Le Stelle”, English: “The Stars”
  • Serenelli et al. (2017) Serenelli, A., Johnson, J., Huber, D., et al.: 2017, The First APOKASC Catalog of Kepler Dwarf and Subgiant Stars”, 233, 23
  • Shakespeare (1599) Shakespeare, W.: 1599, The Tragedy of Julius Caesar”, The First Folio
  • Shapley (1914) Shapley, H.: 1914, On the Nature and Cause of Cepheid Variation”, 40, 448
  • Shapley (1918) Shapley, H.: 1918, Studies based on the colors and magnitudes in stellar clusters. VI. On the determination of the distances of globular clusters”, 48
  • Shapley and Curtis (1921) Shapley, H. and Curtis, H. D.: 1921, The Scale of the Universe”, Bulletin of the National Research Council, Vol. 2, Part 3, No. 11 2, 171
  • Sharma et al. (2016) Sharma, S., Stello, D., Bland-Hawthorn, J., Huber, D., and Bedding, T. R.: 2016, Stellar Population Synthesis Based Modeling of the Milky Way Using Asteroseismology of 13,000 Kepler Red Giants”, 822, 15
  • Silva Aguirre et al. (2015) Silva Aguirre, V., Davies, G. R., Basu, S., et al.: 2015, Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology”, 452, 2127
  • Silva Aguirre et al. (2017) Silva Aguirre, V., Lund, M. N., Antia, H. M., et al.: 2017, Standing on the Shoulders of Dwarfs: the Kepler Asteroseismic LEGACY Sample. II. Radii, Masses, and Ages”, 835, 173
  • Singer and Singer (1999) Singer, S. and Singer, S.: 1999, Complexity analysis of Nelder-Mead search iterations” in Proceedings of the 1. Conference on Applied Mathematics and Computation, pp 185–196, PMF–Matematički odjel, Zagreb
  • Skurichina and Duin (2002) Skurichina, M. and Duin, R. P. W.: 2002, Bagging, Boosting and the Random Subspace Method for Linear Classifiers”, Pattern Analysis & Applications 5 (2), 121
  • Sobol (1967) Sobol, I. M.: 1967, On the distribution of points in a cube and the approximate evaluation of integrals”, USSR Computational mathematics and mathematical physics 7, 86
  • Sonoi et al. (2015) Sonoi, T., Samadi, R., Belkacem, K., et al.: 2015, Surface-effect corrections for solar-like oscillations using 3D hydrodynamical simulations. I. Adiabatic oscillations”, 583, A112
  • Spiegel and Zahn (1992) Spiegel, E. A. and Zahn, J.-P.: 1992, The solar tachocline”, 265, 106
  • Spruit et al. (1990) Spruit, H. C., Nordlund, A., and Title, A. M.: 1990, Solar Convection”, 28, 263
  • Stello et al. (2009a) Stello, D., Chaplin, W. J., Basu, S., Elsworth, Y., and Bedding, T. R.: 2009a, The relation between and for solar-like oscillations”, 400, L80
  • Stello et al. (2009b) Stello, D., Chaplin, W. J., Bruntt, H., et al.: 2009b, Radius Determination of Solar-type Stars Using Asteroseismology: What to Expect from the Kepler Mission”, 700, 1589
  • Sterne (1938) Sterne, T. E.: 1938, The Secondary Variation of  Scuti”, 87, 133
  • Sterne (1940) Sterne, T. E.: 1940, A Note on the Variation of delta Scuti”, Proceedings of the National Academy of Science 26, 537
  • Sugimoto and Fujimoto (2000) Sugimoto, D. and Fujimoto, M. Y.: 2000, Why Stars Become Red Giants”, 538, 837
  • Tassoul (1980) Tassoul, M.: 1980, Asymptotic approximations for stellar nonradial pulsations”, 43, 469
  • Tenorio (2001) Tenorio, L.: 2001, Statistical Regularization of Inverse Problems”, SIAM Review 43 (2), 347
  • Therneau (2014) Therneau, T.: 2014, deming: Deming, Thiel-Sen and Passing-Bablock Regression”, R package version 1.0-1
  • Thompson (1993) Thompson, M. J.: 1993, Seismic Investigation of the Sun’s Internal Structure and Rotation” in T. M. Brown (ed.) GONG 1992. Seismic Investigation of the Sun and Stars, Vol. 42 of Astronomical Society of the Pacific Conference Series, p. 141
  • Thompson (2000) Thompson, M. J.: 2000, private communication
  • Thompson and Christensen-Dalsgaard (2002) Thompson, M. J. and Christensen-Dalsgaard, J.: 2002, On inverting asteroseismic data” in B. Battrick, F. Favata, I. W. Roxburgh, and D. Galadi (eds.) Stellar Structure and Habitable Planet Finding, Vol. 485 of ESA Special Publication, pp 95–101
  • Thomson (1863) Thomson, W.: 1863, Dynamical Problems Regarding Elastic Spheroidal Shells and Spheroids of Incompressible Liquid”, Philosophical Transactions of the Royal Society of London Series I 153, 583
  • Thoul et al. (1994) Thoul, A. A., Bahcall, J. N., and Loeb, A.: 1994, Element diffusion in the solar interior”, 421, 828
  • Tikhonov (1977) Tikhonov, A. N. and Arsenin, V. Y.: 1977, “Solutions of ill-posed problems”, Winston
  • TOP500 (2015) TOP500: 2015, TOP500 Supercomputer Site
  • Townsend and Teitler (2013) Townsend, R. H. D. and Teitler, S. A.: 2013, GYRE: an open-source stellar oscillation code based on a new Magnus Multiple Shooting scheme”, 435, 3406
  • Triana et al. (2017) Triana, S. A., Corsaro, E., De Ridder, J., et al.: 2017, Internal rotation of 13 low-mass low-luminosity red giants in the Kepler field”, 602, A62
  • Tuv et al. (2009) Tuv, E., Borisov, A., Runger, G., and Torkkola, K.: 2009,

    Feature selection with ensembles, artificial variables, and redundancy elimination”,

    Journal of Machine Learning Research 10, 1341
  • Ulrich (1970) Ulrich, R. K.: 1970, The Five-Minute Oscillations on the Solar Surface”, 162, 993
  • Ulrich (1986) Ulrich, R. K.: 1986, Determination of stellar ages from asteroseismology”, 306, L37
  • Unno et al. (1979) Unno, W., Osaki, Y., Ando, H., and Shibahashi, H.: 1979, Nonradial oscillations of stars”, University of Tokyo Press
  • Van Der Walt et al. (2011) Van Der Walt, S., Colbert, S. C., and Varoquaux, G.: 2011, The NumPy array: a structure for efficient numerical computation”, Computing in Science & Engineering 13 (2), 22
  • Veresoglou and Rillig (2015) Veresoglou, S. D. and Rillig, M. C.: 2015, Evidence-Based Data Analysis: Protecting the World From Bad Code? Comment by Veresoglou and Rillig”, The American Statistician 69 (3), 257
  • Verma et al. (2014a) Verma, K., Antia, H. M., Basu, S., and Mazumdar, A.: 2014a, A Theoretical Study of Acoustic Glitches in Low-mass Main-sequence Stars”, 794, 114
  • Verma et al. (2014b) Verma, K., Faria, J. P., Antia, H. M., et al.: 2014b, Asteroseismic Estimate of Helium Abundance of a Solar Analog Binary System”, 790, 138
  • Verma et al. (2016) Verma, K., Hanasoge, S., Bhattacharya, J., Antia, H. M., and Krishnamurthi, G.: 2016, Asteroseismic determination of fundamental parameters of Sun-like stars using multilayered neural networks”, 461, 4206
  • Verma et al. (2017) Verma, K., Raodeo, K., Antia, H. M., et al.: 2017, Seismic Measurement of the Locations of the Base of Convection Zone and Helium Ionization Zone for Stars in the Kepler Seismic LEGACY Sample”, 837, 47
  • Viani et al. (2017) Viani, L. S., Basu, S., Chaplin, W. J., Davies, G. R., and Elsworth, Y.: 2017, Changing the Scaling Relation: The Need for a Mean Molecular Weight Term”, 843, 11
  • Vito et al. (2005) Vito, E. D., Rosasco, L., Caponnetto, A., Giovannini, U. D., and Odone, F.: 2005, Learning from examples as an inverse problem”, Journal of Machine Learning Research 6, 883
  • Vogel (1889) Vogel, H. C.: 1889, Über die auf dem Potsdamer Observatorium unternommenen Untersuchungen über die Bewegung der Sterne im Visionsradius vermittelst der spectrographischen Methode”, Astronomische Nachrichten 121, 241
  • Walker et al. (2003) Walker, G., Matthews, J., Kuschnig, R., et al.: 2003, The MOST Asteroseismology Mission: Ultraprecise Photometry from Space”, 115, 1023
  • Weiss (1983) Weiss, A.: 1983, On the evolution to red giants”, 127, 411
  • White et al. (2013) White, T. R., Huber, D., Maestro, V., et al.: 2013, Interferometric radii of bright Kepler stars with the CHARA Array:  Cygni and 16 Cygni A and B”, 433, 1262
  • Whitworth (1991) Whitworth, A.: 1991, Why do stars become giants?”, Annales de Physique 16, 515
  • Whitworth (1989) Whitworth, A. P.: 1989, Why red giants are giant”, 236, 505
  • Wickham (2015) Wickham, H.: 2015, scales: Scale Functions for Visualization”, R package version 0.3.0
  • Wickham (2016) Wickham, H.: 2016, ggplot2: elegant graphics for data analysis”, Springer
  • Yahil and van den Horn (1985) Yahil, A. and van den Horn, L.: 1985, Why do giants puff up?”, 296, 554
  • Zsoldos (1994) Zsoldos, E.: 1994, Three Early Variable Star Catalogues”, Journal for the History of Astronomy 25, 92

Education

Ph.D. Candidate, Institute of Computer Science, University of Göttingen
International Max Planck Research School for Solar System Science
Fellow of the National Physical Science Consortium
M.Sc. Computer Science, Indiana University Bloomington, USA 2014
Fellow of the National Physical Science Consortium
GPA: 3.95/4.0
B.Sc. Applied Mathematics, SUNY Oswego, NY, USA 2012
B.Sc. Computer Science, ibid. 2012
Presidential Scholar
Honors Thesis: Multiphase Relations of Magellanic Cloud Cepheids
GPA: 3.81/4.0 (summa cum laude, ranked #1 in Computer Science)

Research Positions

Max Planck Institute for Solar System Research (Germany) 2015 – 2018
Doctoral Candidate, Stellar Ages & Galactic Evolution Group
Yale University (USA) 2016 – 2017
Visiting Assistant in Research, Department of Astronomy
Indiana University (USA) 2013 – 2015
Research Assistant, School of Informatics & Computing
NIST Information Technology Laboratory (USA) 2013 – 2014
Guest Researcher, Scientific Applications and Visualization Group
National Center of Sciences (Japan) 2013
Research Student, National Institute of Informatics
NASA Jet Propulsion Laboratory (USA) 2012
SURF Fellow, Cassini Mission to Saturn
Federal University of Alagoas (Brazil) 2011
REU Student, Institute of Physics
Federal University of Santa Catarina (Brazil) 2010
REU Student, Department of Physics

Teaching Positions

Yale University Spring 2017
Teaching Assistant, Department of Astronomy
University of Göttingen Summer 2016
Assistant, Institute for Astrophysics
Indiana University Fall 2012
Associate Instructor, School of Informatics & Computing
SUNY Oswego Fall 2010
Seminar Leader, Honors Department

Selected Talks invited

Stellar Astrophysics Centre Seminar (Aarhus, Denmark) 2018
Determining stellar structure with asteroseismology using novel techniques

TESS/Kepler Asteroseismic Science Consortium (Aarhus, Denmark) 2018
Testing stellar physics with asteroseismic inversions of solar-type stars

Madison Seminar (University of Wisconsin–Madison, USA) 2017
From Starlight to Stellar Ages with Asteroseismology

Rocks & Stars II (Max Planck Institute, Göttingen, Germany) 2017
The Seismic Structures of Solar-Type Stars

ERES-III (Yale University, New Haven, CT, USA) 2017
Fundamental Parameters of Exoplanet Host Stars with Asteroseismology

Science Today (Public talk at SUNY Oswego, NY, USA) 2017
A Look Inside the Private Lives of Stars

Red Giant Modeling Workshop (Göttingen, Germany) 2016
Fundamental Stellar Parameters in an Instant with Machine Learning

RR Lyrae (Visegrád, Hungary) 2015
Resolving Combination Frequency Amplitudes of Multimode Pulsators

American Astronomical Society (Seattle, WA, USA) 2015
Optimal Model Discovery of Periodic Variable Stars

Delhi Workshop on Variable Stars (Delhi, India) 2015
Calibrating the Cepheid Distances to the Magellanic Clouds

Kerala Workshop on Stellar Astrophysics (Kerala, India) 2014
Automated Supervised Classification of Variable Stars

Honors & Awards

Stellar Astrophysics Centre Postdoctoral Fellowship 2018 – 2021
National Physical Science Consortium Graduate Fellowship 2012 – 2017
SUNY Oswego Presidential Scholarship 2008 – 2012
Oebele Van Dyk Outstanding Computer Science Senior Award 2012
SUNY Chancellor’s Award 2012
SUNY Oswego Student/Faculty Collaborative Challenge Grant 2011