Inverse modeling of hydrologic systems with adaptive multi-fidelity simulations

by   Jiangjiang Zhang, et al.

Markov chain Monte Carlo (MCMC) simulation methods are widely used to assess parameter uncertainties of hydrologic models conditioned on measurements of observable state variables. However, when the model is CPU-intensive, the computational cost of MCMC simulation will be prohibitive. In this situation, a CPU-efficient while less accurate low-fidelity model (e.g., a numerical model with a coarser discretization, or a data-driven surrogate) is usually adopted. When integrating the high and low-fidelity models in a proper manner, we can balance both efficiency and accuracy in the MCMC simulation. As the posterior distribution of the unknown model parameters is the region of our interest, it is wise to distribute most of the computational budget therein. Based on this idea, we propose an adaptive multi-fidelity simulation-based MCMC algorithm for efficient inverse modeling of hydrologic systems in this paper. Here, we evaluate the high-fidelity model mainly in the posterior region through iteratively running MCMC based on a Gaussian process (GP) system adaptively constructed with multi-fidelity simulations. The error of the GP system is rigorously considered in the MCMC simulations and gradually reduced to a negligible level. Thus, the proposed method can obtain an accurate estimate of the posterior distribution with a very low computational cost, whose performance is demonstrated by two numerical case studies in inverse modeling of hydrologic systems.


page 29

page 30

page 34

page 35


Inverse modeling of hydrologic systems with adaptive multi-fidelity Markov chain Monte Carlo simulations

Markov chain Monte Carlo (MCMC) simulation methods are widely used to as...

A transport-based multifidelity preconditioner for Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) sampling of posterior distributions aris...

Integrating hyper-parameter uncertainties in a multi-fidelity Bayesian model for the estimation of a probability of failure

A multi-fidelity simulator is a numerical model, in which one of the inp...

Stochastic additive manufacturing simulation: from experiment to surface roughness and porosity prediction

Deterministic computational modeling of laser powder bed fusion (LPBF) p...

Multi-fidelity Monte Carlo: a pseudo-marginal approach

Markov chain Monte Carlo (MCMC) is an established approach for uncertain...

An adaptive surrogate modeling based on deep neural networks for large-scale Bayesian inverse problems

It is popular approaches to use surrogate models to speed up the computa...

Please sign up or login with your details

Forgot password? Click here to reset