Inverse Gaussian Process regression for likelihood-free inference

02/21/2021
by   Hongqiao Wang, et al.
0

In this work we consider Bayesian inference problems with intractable likelihood functions. We present a method to compute an approximate of the posterior with a limited number of model simulations. The method features an inverse Gaussian Process regression (IGPR), i.e., one from the output of a simulation model to the input of it. Within the method, we provide an adaptive algorithm with a tempering procedure to construct the approximations of the marginal posterior distributions. With examples we demonstrate that IGPR has a competitive performance compared to some commonly used algorithms, especially in terms of statistical stability and computational efficiency, while the price to pay is that it can only compute a weighted Gaussian approximation of the marginal posteriors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro