Introduction to Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic Probability

11/27/2013
by   Florentin Smarandache, et al.
0

In this paper, we introduce for the first time the notions of neutrosophic measure and neutrosophic integral, and we develop the 1995 notion of neutrosophic probability. We present many practical examples. It is possible to define the neutrosophic measure and consequently the neutrosophic integral and neutrosophic probability in many ways, because there are various types of indeterminacies, depending on the problem we need to solve. Neutrosophics study the indeterminacy. Indeterminacy is different from randomness. It can be caused by physical space materials and type of construction, by items involved in the space, etc.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset