Introduction to Matrix Factorization for Recommender Systems

04/26/2020 ∙ by Shalin Shah, et al. ∙ 0

Recommender systems aim to personalize the experience of user by suggesting items to the user based on the preferences of a user. The preferences are learned from the user’s interaction history or through explicit ratings that the user has given to the items. The system could be part of a retail website, an online bookstore, a movie rental service or an online education portal and so on. In this paper, I will focus on matrix factorization algorithms as applied to recommender systems and discuss the singular value decomposition, gradient descent-based matrix factorization and parallelizing matrix factorization for large scale applications.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.