Introduction of the Residue Number Arithmetic Logic Unit With Brief Computational Complexity Analysis

12/03/2015
by   Eric B. Olsen, et al.
0

Digital System Research has pioneered the mathematics and design for a new class of computing machine using residue numbers. Unlike prior art, the new breakthrough provides methods and apparatus for general purpose computation using several new residue based fractional representations. The result is that fractional arithmetic may be performed without carry. Additionally, fractional operations such as addition, subtraction and multiplication of a fraction by an integer occur in a single clock period, regardless of word size. Fractional multiplication is of the order O(p), where p equals the number of residues. More significantly, complex operations, such as sum of products, may be performed in an extended format, where fractional products are performed and summed using single clock instructions, regardless of word width, and where a normalization operation with an execution time of the order O(p) is performed as a final step.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro