Intrinsically Motivated Multimodal Structure Learning

07/15/2016
by   Jay Ming Wong, et al.
0

We present a long-term intrinsically motivated structure learning method for modeling transition dynamics during controlled interactions between a robot and semi-permanent structures in the world. In particular, we discuss how partially-observable state is represented using distributions over a Markovian state and build models of objects that predict how state distributions change in response to interactions with such objects. These structures serve as the basis for a number of possible future tasks defined as Markov Decision Processes (MDPs). The approach is an example of a structure learning technique applied to a multimodal affordance representation that yields a population of forward models for use in planning. We evaluate the approach using experiments on a bimanual mobile manipulator (uBot-6) that show the performance of model acquisition as the number of transition actions increases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro