Intrinsic Wasserstein Correlation Analysis
We develop a framework of canonical correlation analysis for distribution-valued functional data within the geometry of Wasserstein spaces. Specifically, we formulate an intrinsic concept of correlation between random distributions, propose estimation methods based on functional principal component analysis (FPCA) and Tikhonov regularization, respectively, for the correlation and its corresponding weight functions, and establish the minimax convergence rates of the estimators. The key idea is to extend the framework of tensor Hilbert spaces to distribution-valued functional data to overcome the challenging issue raised by nonlinearity of Wasserstein spaces. The finite-sample performance of the proposed estimators is illustrated via simulation studies, and the practical merit is demonstrated via a study on the association of distributions of brain activities between two brain regions.
READ FULL TEXT