Intrinsic fluctuations of reinforcement learning promote cooperation

09/01/2022
by   Wolfram Barfuss, et al.
0

In this work, we ask for and answer what makes classical reinforcement learning cooperative. Cooperating in social dilemma situations is vital for animals, humans, and machines. While evolutionary theory revealed a range of mechanisms promoting cooperation, the conditions under which agents learn to cooperate are contested. Here, we demonstrate which and how individual elements of the multi-agent learning setting lead to cooperation. Specifically, we consider the widely used temporal-difference reinforcement learning algorithm with epsilon-greedy exploration in the classic environment of an iterated Prisoner's dilemma with one-period memory. Each of the two learning agents learns a strategy that conditions the following action choices on both agents' action choices of the last round. We find that next to a high caring for future rewards, a low exploration rate, and a small learning rate, it is primarily intrinsic stochastic fluctuations of the reinforcement learning process which double the final rate of cooperation to up to 80%. Thus, inherent noise is not a necessary evil of the iterative learning process. It is a critical asset for the learning of cooperation. However, we also point out the trade-off between a high likelihood of cooperative behavior and achieving this in a reasonable amount of time. Our findings are relevant for purposefully designing cooperative algorithms and regulating undesired collusive effects.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset