Interval Structure: A Framework for Representing Uncertain Information

03/13/2013 ∙ by Michael S. K. M. Wong, et al. ∙ 0

In this paper, a unified framework for representing uncertain information based on the notion of an interval structure is proposed. It is shown that the lower and upper approximations of the rough-set model, the lower and upper bounds of incidence calculus, and the belief and plausibility functions all obey the axioms of an interval structure. An interval structure can be used to synthesize the decision rules provided by the experts. An efficient algorithm to find the desirable set of rules is developed from a set of sound and complete inference axioms.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.