Interpreting and Correcting Medical Image Classification with PIP-Net

07/19/2023
by   Meike Nauta, et al.
0

Part-prototype models are explainable-by-design image classifiers, and a promising alternative to black box AI. This paper explores the applicability and potential of interpretable machine learning, in particular PIP-Net, for automated diagnosis support on real-world medical imaging data. PIP-Net learns human-understandable prototypical image parts and we evaluate its accuracy and interpretability for fracture detection and skin cancer diagnosis. We find that PIP-Net's decision making process is in line with medical classification standards, while only provided with image-level class labels. Because of PIP-Net's unsupervised pretraining of prototypes, data quality problems such as undesired text in an X-ray or labelling errors can be easily identified. Additionally, we are the first to show that humans can manually correct the reasoning of PIP-Net by directly disabling undesired prototypes. We conclude that part-prototype models are promising for medical applications due to their interpretability and potential for advanced model debugging.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset