Internet-Augmented Dialogue Generation

07/15/2021 ∙ by Mojtaba Komeili, et al. ∙ 15

The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amount of knowledge within their weights, are known to hallucinate facts when generating dialogue (Shuster et al., 2021); moreover, those facts are frozen in time at the point of model training. In contrast, we propose an approach that learns to generate an internet search query based on the context, and then conditions on the search results to finally generate a response, a method that can employ up-to-the-minute relevant information. We train and evaluate such models on a newly collected dataset of human-human conversations whereby one of the speakers is given access to internet search during knowledgedriven discussions in order to ground their responses. We find that search-query based access of the internet in conversation provides superior performance compared to existing approaches that either use no augmentation or FAISS-based retrieval (Lewis et al., 2020).



There are no comments yet.


page 1

page 10

page 11

page 16

page 17

page 18

Code Repositories


🌞 Profile of 𝘼𝙡𝙚𝙭𝙖𝙣𝙙𝙚𝙧 𝙍𝙤𝙜𝙖𝙡𝙨𝙠𝙞𝙮

view repo
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.