DeepAI AI Chat
Log In Sign Up

Inter-Beat Interval Estimation with Tiramisu Model: A Novel Approach with Reduced Error

by   Asiful Arefeen, et al.

Inter-beat interval (IBI) measurement enables estimation of heart-rate variability (HRV) which, in turns, can provide early indication of potential cardiovascular diseases. However, extracting IBIs from noisy signals is challenging since the morphology of the signal is distorted in the presence of the noise. Electrocardiogram (ECG) of a person in heavy motion is highly corrupted with noise, known as motion-artifact, and IBI extracted from it is inaccurate. As a part of remote health monitoring and wearable system development, denoising ECG signals and estimating IBIs correctly from them have become an emerging topic among signal-processing researchers. Apart from conventional methods, deep-learning techniques have been successfully used in signal denoising recently, and diagnosis process has become easier, leading to accuracy levels that were previously unachievable. We propose a deep-learning approach leveraging tiramisu autoencoder model to suppress motion-artifact noise and make the R-peaks of the ECG signal prominent even in the presence of high-intensity motion. After denoising, IBIs are estimated more accurately expediting diagnosis tasks. Results illustrate that our method enables IBI estimation from noisy ECG signals with SNR up to -30dB with average root mean square error (RMSE) of 13 milliseconds for estimated IBIs. At this noise level, our error percentage remains below 8 techniques.


A Neural Network Approach to ECG Denoising

We propose an ECG denoising method based on a feed forward neural networ...

Complex Deep Learning Models for Denoising of Human Heart ECG signals

Effective and powerful methods for denoising real electrocardiogram (ECG...

Blind ECG Restoration by Operational Cycle-GANs

Continuous long-term monitoring of electrocardiography (ECG) signals is ...

Deep Network for Capacitive ECG Denoising

Continuous monitoring of cardiac health under free living condition is c...

Investigating Deep Learning Benchmarks for Electrocardiography Signal Processing

In recent years, deep learning has witnessed its blossom in the field of...

RespNet: A deep learning model for extraction of respiration from photoplethysmogram

Respiratory ailments afflict a wide range of people and manifests itself...