Intensional Artificial Intelligence: From Symbol Emergence to Explainable and Empathetic AI
We argue that an explainable artificial intelligence must possess a rationale for its decisions, be able to infer the purpose of observed behaviour, and be able to explain its decisions in the context of what its audience understands and intends. To address these issues we present four novel contributions. Firstly, we define an arbitrary task in terms of perceptual states, and discuss two extremes of a domain of possible solutions. Secondly, we define the intensional solution. Optimal by some definitions of intelligence, it describes the purpose of a task. An agent possessed of it has a rationale for its decisions in terms of that purpose, expressed in a perceptual symbol system grounded in hardware. Thirdly, to communicate that rationale requires natural language, a means of encoding and decoding perceptual states. We propose a theory of meaning in which, to acquire language, an agent should model the world a language describes rather than the language itself. If the utterances of humans are of predictive value to the agent's goals, then the agent will imbue those utterances with meaning in terms of its own goals and perceptual states. In the context of Peircean semiotics, a community of agents must share rough approximations of signs, referents and interpretants in order to communicate. Meaning exists only in the context of intent, so to communicate with humans an agent must have comparable experiences and goals. An agent that learns intensional solutions, compelled by objective functions somewhat analogous to human motivators such as hunger and pain, may be capable of explaining its rationale not just in terms of its own intent, but in terms of what its audience understands and intends. It forms some approximation of the perceptual states of humans.
READ FULL TEXT