Intelligent Reflecting Surface Enabled Sensing: Cramér-Rao Lower Bound Optimization

04/23/2022
by   Xianxin Song, et al.
0

This paper investigates intelligent reflecting surface (IRS) enabled non-line-of-sight (NLoS) wireless sensing, in which an IRS is dedicatedly deployed to assist an access point (AP) to sense a target at its NLoS region. It is assumed that the AP is equipped with multiple antennas and the IRS is equipped with a uniform linear array. The AP aims to estimate the target's direction-of-arrival (DoA) with respect to the IRS based on the echo signal from the AP-IRS-target-IRS-AP link. Under this setup, we jointly design the transmit beamforming at the AP and the reflective beamforming at the IRS to minimize the DoA estimation error in terms of Cramér-Rao lower bound (CRLB). Towards this end, we first obtain the closed-form expression of CRLB for DoA estimation. Next, we optimize the joint beamforming design to minimize the obtained CRLB, via alternating optimization, semi-definite relaxation, and successive convex approximation. Finally, numerical results show that the proposed design based on CRLB minimization achieves improved sensing performance in terms of lower estimation mean squared error (MSE), as compared to the traditional schemes with signal-to-noise ratio maximization and separate beamforming designs.

READ FULL TEXT
research
07/12/2022

Intelligent Reflecting Surface Enabled Sensing: Cramér-Rao Bound Optimization

This paper investigates intelligent reflecting surface (IRS) enabled non...
research
01/12/2022

Joint Transmit and Reflective Beamformer Design for Secure Estimation in IRS-Aided WSNs

Wireless sensor networks (WSNs) are vulnerable to eavesdropping as the s...
research
10/16/2019

Joint Transmit and Reflective Beamforming Design for IRS-Assisted Multiuser MISO SWIPT Systems

This paper studies an intelligent reflecting surface (IRS)-assisted mult...
research
10/25/2018

Beamforming Optimization for Intelligent Reflecting Surface with Discrete Phase Shifts

Intelligent reflecting surface (IRS) is a promising technology for achie...
research
08/10/2023

Fully-Passive versus Semi-Passive IRS-Enabled Sensing: SNR Analysis

This paper compares the signal-to-noise ratio (SNR) performance between ...
research
12/27/2022

Hierarchical Deep Reinforcement Learning for Age-of-Information Minimization in IRS-aided and Wireless-powered Wireless Networks

In this paper, we focus on a wireless-powered sensor network coordinated...
research
03/06/2021

Intelligent Reflecting Surface Enhanced D2D Cooperative Computing

This paper investigates a device-to-device (D2D) cooperative computing s...

Please sign up or login with your details

Forgot password? Click here to reset