Integration-free Learning of Flow Maps

11/06/2022
by   Saroj Sahoo, et al.
0

We present a method for learning neural representations of flow maps from time-varying vector field data. The flow map is pervasive within the area of flow visualization, as it is foundational to numerous visualization techniques, e.g. integral curve computation for pathlines or streaklines, as well as computing separation/attraction structures within the flow field. Yet bottlenecks in flow map computation, namely the numerical integration of vector fields, can easily inhibit their use within interactive visualization settings. In response, in our work we seek neural representations of flow maps that are efficient to evaluate, while remaining scalable to optimize, both in computation cost and data requirements. A key aspect of our approach is that we can frame the process of representation learning not in optimizing for samples of the flow map, but rather, a self-consistency criterion on flow map derivatives that eliminates the need for flow map samples, and thus numerical integration, altogether. Central to realizing this is a novel neural network design for flow maps, coupled with an optimization scheme, wherein our representation only requires the time-varying vector field for learning, encoded as instantaneous velocity. We show the benefits of our method over prior works in terms of accuracy and efficiency across a range of 2D and 3D time-varying vector fields, while showing how our neural representation of flow maps can benefit unsteady flow visualization techniques such as streaklines, and the finite-time Lyapunov exponent.

READ FULL TEXT

page 5

page 7

page 8

page 9

page 10

page 11

page 14

research
10/15/2021

Exploratory Lagrangian-Based Particle Tracing Using Deep Learning

Time-varying vector fields produced by computational fluid dynamics simu...
research
12/31/2018

Path-Invariant Map Networks

Optimizing a network of maps among a collection of objects/domains (or m...
research
07/03/2020

A Discrete Probabilistic Approach to Dense Flow Visualization

Dense flow visualization is a popular visualization paradigm. Traditiona...
research
03/25/2019

Robust Reference Frame Extraction from Unsteady 2D Vector Fields with Convolutional Neural Networks

Robust feature extraction is an integral part of scientific visualizatio...
research
08/11/2017

Visualizing Time-Varying Particle Flows with Diffusion Geometry

The tasks of identifying separation structures and clusters in flow data...
research
12/30/2006

Magnification Laws of Winner-Relaxing and Winner-Enhancing Kohonen Feature Maps

Self-Organizing Maps are models for unsupervised representation formatio...
research
04/23/2020

Deep Learning of Chaos Classification

We train an artificial neural network which distinguishes chaotic and re...

Please sign up or login with your details

Forgot password? Click here to reset