Integral equation method for the 1D steady-state Poisson-Nernst-Planck equations

04/10/2023
by   Zhen Chao, et al.
0

An integral equation method is presented for the 1D steady-state Poisson-Nernst-Planck equations modeling ion transport through membrane channels. The differential equations are recast as integral equations using Green's 3rd identity yielding a fixed-point problem for the electric potential gradient and ion concentrations. The integrals are discretized by a combination of midpoint and trapezoid rules and the resulting algebraic equations are solved by Gummel iteration. Numerical tests for electroneutral and non-electroneutral systems demonstrate the method's 2nd order accuracy and ability to resolve sharp boundary layers. The method is applied to a 1D model of the K^+ ion channel with a fixed charge density that ensures cation selectivity. In these tests, the proposed integral equation method yields potential and concentration profiles in good agreement with published results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset