Integer-valued autoregressive process with flexible marginal and innovation distributions

04/18/2020
by   Matheus B. Guerrero, et al.
0

INteger Auto-Regressive (INAR) processes are usually defined by specifying the innovations and the operator, which often leads to difficulties in deriving marginal properties of the process. In many practical situations, a major modeling limitation is that it is difficult to justify the choice of the operator. To overcome these drawbacks, we propose a new flexible approach to build an INAR model: we pre-specify the marginal and innovation distributions. Hence, the operator is a consequence of specifying the desired marginal and innovation distributions. Our new INAR model has both marginal and innovations geometric distributed, being a direct alternative to the classical Poisson INAR model. Our proposed process has interesting stochastic properties such as an MA(∞) representation, time-reversibility, and closed-forms for the transition probabilities h-steps ahead, allowing for coherent forecasting. We analyze time-series counts of skin lesions using our proposed approach, comparing it with existing INAR and INGARCH models. Our model gives more adherence to the data and better forecasting performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset