Instance Correction for Learning with Open-set Noisy Labels

06/01/2021 ∙ by Xiaobo Xia, et al. ∙ 0

The problem of open-set noisy labels denotes that part of training data have a different label space that does not contain the true class. Lots of approaches, e.g., loss correction and label correction, cannot handle such open-set noisy labels well, since they need training data and test data to share the same label space, which does not hold for learning with open-set noisy labels. The state-of-the-art methods thus employ the sample selection approach to handle open-set noisy labels, which tries to select clean data from noisy data for network parameters updates. The discarded data are seen to be mislabeled and do not participate in training. Such an approach is intuitive and reasonable at first glance. However, a natural question could be raised "can such data only be discarded during training?". In this paper, we show that the answer is no. Specifically, we discuss that the instances of discarded data could consist of some meaningful information for generalization. For this reason, we do not abandon such data, but use instance correction to modify the instances of the discarded data, which makes the predictions for the discarded data consistent with given labels. Instance correction are performed by targeted adversarial attacks. The corrected data are then exploited for training to help generalization. In addition to the analytical results, a series of empirical evidences are provided to justify our claims.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 7

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.