Instabilities driven by frontal polymerization in thermosetting polymers and composites

05/12/2020
by   Elyas Goli, et al.
0

Frontal Polymerization (FP) was recently demonstrated as a faster, more energy-efficient way to manufacture fiber-reinforced thermosetting-polymer-matrix composites. FP uses heat from the exothermic reaction of the solution of monomer and initiator to generate a selfpropagating polymerization front. In most cases, the polymerization front propagates in a steady fashion. However, under some conditions, the front experiences instabilities, which do affect the quality of the manufactured composite part. In this work, we use a coupled thermo-chemical model and an adaptive nonlinear finite element solver to simulate FP-driven instabilities in dicyclopentadiene (DCPD) and in carbon-fiber DCPD-matrix composites. With the aid of 1-D transient simulations, we investigate how the initial temperature and the carbon fiber volume fraction affect the amplitude and wavelength of the thermal instabilities. We also extract the range of processing conditions for which the instabilities are predicted to appear. The last part of this work investigates the effect of convective heat loss on the FP-driven instabilities in both neat resin and composite cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro